Loading…

Mining of potential drug targets through the identification of essential and analogous enzymes in the genomes of pathogens of Glycine max, Zea mays and Solanum lycopersicum

Pesticides are one of the most widely used pest and disease control measures in plant crops and their indiscriminate use poses a direct risk to the health of populations and environment around the world. As a result, there is a great need for the development of new, less toxic molecules to be employ...

Full description

Saved in:
Bibliographic Details
Published in:PloS one 2018-05, Vol.13 (5), p.e0197511
Main Authors: da Silva, Rangeline Azevedo, Pereira, Leandro de Mattos, Silveira, Melise Chaves, Jardim, Rodrigo, de Miranda, Antonio Basilio
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c692t-e2bb11c1fb4410db75eb6edfe529064d83d0fe9124107e28be7b3362791808163
cites cdi_FETCH-LOGICAL-c692t-e2bb11c1fb4410db75eb6edfe529064d83d0fe9124107e28be7b3362791808163
container_end_page
container_issue 5
container_start_page e0197511
container_title PloS one
container_volume 13
creator da Silva, Rangeline Azevedo
Pereira, Leandro de Mattos
Silveira, Melise Chaves
Jardim, Rodrigo
de Miranda, Antonio Basilio
description Pesticides are one of the most widely used pest and disease control measures in plant crops and their indiscriminate use poses a direct risk to the health of populations and environment around the world. As a result, there is a great need for the development of new, less toxic molecules to be employed against plant pathogens. In this work, we employed an in silico approach to study the genes coding for enzymes of the genomes of three commercially important plants, soybean (Glycine max), tomato (Solanum lycopersicum) and corn (Zea mays), as well as 15 plant pathogens (4 bacteria and 11 fungi), focusing on revealing a set of essential and non-homologous isofunctional enzymes (NISEs) that could be prioritized as drug targets. By combining sequence and structural data, we obtained an initial set of 568 cases of analogy, of which 97 were validated and further refined, revealing a subset of 29 essential enzymatic activities with a total of 119 different structural forms, most belonging to central metabolic routes, including the carbohydrate metabolism, the metabolism of amino acids, among others. Further, another subset of 26 enzymatic activities possess a tertiary structure specific for the pathogen, not present in plants, men and Apis mellifera, which may be of importance for the development of specific enzymatic inhibitors against plant diseases that are less harmful to humans and the environment.
doi_str_mv 10.1371/journal.pone.0197511
format article
fullrecord <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_2044300515</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A540296283</galeid><doaj_id>oai_doaj_org_article_900341e5b5ed474da76bcd9aa3de19aa</doaj_id><sourcerecordid>A540296283</sourcerecordid><originalsourceid>FETCH-LOGICAL-c692t-e2bb11c1fb4410db75eb6edfe529064d83d0fe9124107e28be7b3362791808163</originalsourceid><addsrcrecordid>eNqNk9GK1DAUhoso7jr6BqIFQRCcMWnatLkRlkXXgZUFV73wJqTNaZuhTWaTVHZ8Jh_SdKa7TEFBSklO8v1_wk9OFD3HaIVJjt9tzGC16FZbo2GFMMszjB9Ep5iRZEkTRB4ezU-iJ85tEMpIQenj6CRhOWMFJafR789KK93Epo63xoP2SnSxtEMTe2Eb8C72rTVD04YRYiVHolaV8MroUQTOTSKhZfhFZxozuBj0r10PLlZ6L2xAm7EcjxG-NaHeFxfdrlIa4l7cvo1_gAiTndtbXZtO6KGPA2C2YJ2qhv5p9KgWnYNn07iIvn388PX80_Ly6mJ9fna5rChL_BKSssS4wnWZphjJMs-gpCBryBKGaCoLIlENDCdhN4ekKCEvCaFJznCBCkzJInp58N12xvEpaMcTlKYkhIizQKwPhDRiw7dW9cLuuBGK7xeMbbiwXlUdcIYQSTFkZQYyzVMpclpWkglBJOBxWETvp9OGsgdZhTyt6Gam8x2tWt6YnzxjlOW0CAavJgNrbgZw_h9XnqhGhFspXZtgVvXKVfwsS1HCaFKQQK3-QoVPQq-q8NRqFdZngjczQWA83PpGDM7x9fWX_2evvs_Z10dsC6LzrTPdMD48NwfTA1hZ45yF-j45jPjYKXdp8LFT-NQpQfbiOPV70V1rkD8XyxIS</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2044300515</pqid></control><display><type>article</type><title>Mining of potential drug targets through the identification of essential and analogous enzymes in the genomes of pathogens of Glycine max, Zea mays and Solanum lycopersicum</title><source>Publicly Available Content Database</source><source>PubMed Central</source><creator>da Silva, Rangeline Azevedo ; Pereira, Leandro de Mattos ; Silveira, Melise Chaves ; Jardim, Rodrigo ; de Miranda, Antonio Basilio</creator><contributor>Lightfoot, David A.</contributor><creatorcontrib>da Silva, Rangeline Azevedo ; Pereira, Leandro de Mattos ; Silveira, Melise Chaves ; Jardim, Rodrigo ; de Miranda, Antonio Basilio ; Lightfoot, David A.</creatorcontrib><description>Pesticides are one of the most widely used pest and disease control measures in plant crops and their indiscriminate use poses a direct risk to the health of populations and environment around the world. As a result, there is a great need for the development of new, less toxic molecules to be employed against plant pathogens. In this work, we employed an in silico approach to study the genes coding for enzymes of the genomes of three commercially important plants, soybean (Glycine max), tomato (Solanum lycopersicum) and corn (Zea mays), as well as 15 plant pathogens (4 bacteria and 11 fungi), focusing on revealing a set of essential and non-homologous isofunctional enzymes (NISEs) that could be prioritized as drug targets. By combining sequence and structural data, we obtained an initial set of 568 cases of analogy, of which 97 were validated and further refined, revealing a subset of 29 essential enzymatic activities with a total of 119 different structural forms, most belonging to central metabolic routes, including the carbohydrate metabolism, the metabolism of amino acids, among others. Further, another subset of 26 enzymatic activities possess a tertiary structure specific for the pathogen, not present in plants, men and Apis mellifera, which may be of importance for the development of specific enzymatic inhibitors against plant diseases that are less harmful to humans and the environment.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0197511</identifier><identifier>PMID: 29799863</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Amino acids ; Animals ; Anti-Infective Agents - chemistry ; Anti-Infective Agents - pharmacology ; Apis mellifera ; Bacillus subtilis ; Bacteria - drug effects ; Bacteria - enzymology ; Bacteria - genetics ; Biology and Life Sciences ; Carbohydrate metabolism ; Carbohydrates ; Computer Simulation ; Consumption ; Corn ; Crops, Agricultural - microbiology ; Datasets ; Disease control ; Diseases and pests ; Drug Discovery ; E coli ; Enzymatic activity ; Enzymes ; Escherichia coli ; Fungi ; Fungi - drug effects ; Fungi - enzymology ; Fungi - genetics ; Genetic aspects ; Genome, Bacterial ; Genome, Fungal ; Genomes ; Glycine max ; Glycine max - microbiology ; Health aspects ; Health risks ; Homo sapiens ; Homology ; Humans ; Medicine and Health Sciences ; Metabolism ; Mining ; Molecular chains ; Organisms ; Oxidative stress ; Parasites ; Pathogens ; Pest control ; Pesticides ; Pesticides - pharmacology ; Pesticides - toxicity ; Physiological aspects ; Phytopathogenic bacteria ; Phytopathogenic fungi ; Plant Breeding ; Plant diseases ; Plant Diseases - microbiology ; Plant Diseases - prevention &amp; control ; Protein structure ; Proteins ; Pseudomonas syringae ; Research and Analysis Methods ; Solanum lycopersicum ; Solanum lycopersicum - microbiology ; Soybeans ; Structural forms ; Target recognition ; Tertiary structure ; Tomatoes ; Trichoderma harzianum ; Zea mays ; Zea mays - microbiology</subject><ispartof>PloS one, 2018-05, Vol.13 (5), p.e0197511</ispartof><rights>COPYRIGHT 2018 Public Library of Science</rights><rights>2018 Silva et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2018 Silva et al 2018 Silva et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c692t-e2bb11c1fb4410db75eb6edfe529064d83d0fe9124107e28be7b3362791808163</citedby><cites>FETCH-LOGICAL-c692t-e2bb11c1fb4410db75eb6edfe529064d83d0fe9124107e28be7b3362791808163</cites><orcidid>0000-0001-6903-1137</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2044300515/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2044300515?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,315,733,786,790,891,25783,27957,27958,37047,44625,53827,53829,75483</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29799863$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Lightfoot, David A.</contributor><creatorcontrib>da Silva, Rangeline Azevedo</creatorcontrib><creatorcontrib>Pereira, Leandro de Mattos</creatorcontrib><creatorcontrib>Silveira, Melise Chaves</creatorcontrib><creatorcontrib>Jardim, Rodrigo</creatorcontrib><creatorcontrib>de Miranda, Antonio Basilio</creatorcontrib><title>Mining of potential drug targets through the identification of essential and analogous enzymes in the genomes of pathogens of Glycine max, Zea mays and Solanum lycopersicum</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>Pesticides are one of the most widely used pest and disease control measures in plant crops and their indiscriminate use poses a direct risk to the health of populations and environment around the world. As a result, there is a great need for the development of new, less toxic molecules to be employed against plant pathogens. In this work, we employed an in silico approach to study the genes coding for enzymes of the genomes of three commercially important plants, soybean (Glycine max), tomato (Solanum lycopersicum) and corn (Zea mays), as well as 15 plant pathogens (4 bacteria and 11 fungi), focusing on revealing a set of essential and non-homologous isofunctional enzymes (NISEs) that could be prioritized as drug targets. By combining sequence and structural data, we obtained an initial set of 568 cases of analogy, of which 97 were validated and further refined, revealing a subset of 29 essential enzymatic activities with a total of 119 different structural forms, most belonging to central metabolic routes, including the carbohydrate metabolism, the metabolism of amino acids, among others. Further, another subset of 26 enzymatic activities possess a tertiary structure specific for the pathogen, not present in plants, men and Apis mellifera, which may be of importance for the development of specific enzymatic inhibitors against plant diseases that are less harmful to humans and the environment.</description><subject>Amino acids</subject><subject>Animals</subject><subject>Anti-Infective Agents - chemistry</subject><subject>Anti-Infective Agents - pharmacology</subject><subject>Apis mellifera</subject><subject>Bacillus subtilis</subject><subject>Bacteria - drug effects</subject><subject>Bacteria - enzymology</subject><subject>Bacteria - genetics</subject><subject>Biology and Life Sciences</subject><subject>Carbohydrate metabolism</subject><subject>Carbohydrates</subject><subject>Computer Simulation</subject><subject>Consumption</subject><subject>Corn</subject><subject>Crops, Agricultural - microbiology</subject><subject>Datasets</subject><subject>Disease control</subject><subject>Diseases and pests</subject><subject>Drug Discovery</subject><subject>E coli</subject><subject>Enzymatic activity</subject><subject>Enzymes</subject><subject>Escherichia coli</subject><subject>Fungi</subject><subject>Fungi - drug effects</subject><subject>Fungi - enzymology</subject><subject>Fungi - genetics</subject><subject>Genetic aspects</subject><subject>Genome, Bacterial</subject><subject>Genome, Fungal</subject><subject>Genomes</subject><subject>Glycine max</subject><subject>Glycine max - microbiology</subject><subject>Health aspects</subject><subject>Health risks</subject><subject>Homo sapiens</subject><subject>Homology</subject><subject>Humans</subject><subject>Medicine and Health Sciences</subject><subject>Metabolism</subject><subject>Mining</subject><subject>Molecular chains</subject><subject>Organisms</subject><subject>Oxidative stress</subject><subject>Parasites</subject><subject>Pathogens</subject><subject>Pest control</subject><subject>Pesticides</subject><subject>Pesticides - pharmacology</subject><subject>Pesticides - toxicity</subject><subject>Physiological aspects</subject><subject>Phytopathogenic bacteria</subject><subject>Phytopathogenic fungi</subject><subject>Plant Breeding</subject><subject>Plant diseases</subject><subject>Plant Diseases - microbiology</subject><subject>Plant Diseases - prevention &amp; control</subject><subject>Protein structure</subject><subject>Proteins</subject><subject>Pseudomonas syringae</subject><subject>Research and Analysis Methods</subject><subject>Solanum lycopersicum</subject><subject>Solanum lycopersicum - microbiology</subject><subject>Soybeans</subject><subject>Structural forms</subject><subject>Target recognition</subject><subject>Tertiary structure</subject><subject>Tomatoes</subject><subject>Trichoderma harzianum</subject><subject>Zea mays</subject><subject>Zea mays - microbiology</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNqNk9GK1DAUhoso7jr6BqIFQRCcMWnatLkRlkXXgZUFV73wJqTNaZuhTWaTVHZ8Jh_SdKa7TEFBSklO8v1_wk9OFD3HaIVJjt9tzGC16FZbo2GFMMszjB9Ep5iRZEkTRB4ezU-iJ85tEMpIQenj6CRhOWMFJafR789KK93Epo63xoP2SnSxtEMTe2Eb8C72rTVD04YRYiVHolaV8MroUQTOTSKhZfhFZxozuBj0r10PLlZ6L2xAm7EcjxG-NaHeFxfdrlIa4l7cvo1_gAiTndtbXZtO6KGPA2C2YJ2qhv5p9KgWnYNn07iIvn388PX80_Ly6mJ9fna5rChL_BKSssS4wnWZphjJMs-gpCBryBKGaCoLIlENDCdhN4ekKCEvCaFJznCBCkzJInp58N12xvEpaMcTlKYkhIizQKwPhDRiw7dW9cLuuBGK7xeMbbiwXlUdcIYQSTFkZQYyzVMpclpWkglBJOBxWETvp9OGsgdZhTyt6Gam8x2tWt6YnzxjlOW0CAavJgNrbgZw_h9XnqhGhFspXZtgVvXKVfwsS1HCaFKQQK3-QoVPQq-q8NRqFdZngjczQWA83PpGDM7x9fWX_2evvs_Z10dsC6LzrTPdMD48NwfTA1hZ45yF-j45jPjYKXdp8LFT-NQpQfbiOPV70V1rkD8XyxIS</recordid><startdate>20180525</startdate><enddate>20180525</enddate><creator>da Silva, Rangeline Azevedo</creator><creator>Pereira, Leandro de Mattos</creator><creator>Silveira, Melise Chaves</creator><creator>Jardim, Rodrigo</creator><creator>de Miranda, Antonio Basilio</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-6903-1137</orcidid></search><sort><creationdate>20180525</creationdate><title>Mining of potential drug targets through the identification of essential and analogous enzymes in the genomes of pathogens of Glycine max, Zea mays and Solanum lycopersicum</title><author>da Silva, Rangeline Azevedo ; Pereira, Leandro de Mattos ; Silveira, Melise Chaves ; Jardim, Rodrigo ; de Miranda, Antonio Basilio</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c692t-e2bb11c1fb4410db75eb6edfe529064d83d0fe9124107e28be7b3362791808163</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Amino acids</topic><topic>Animals</topic><topic>Anti-Infective Agents - chemistry</topic><topic>Anti-Infective Agents - pharmacology</topic><topic>Apis mellifera</topic><topic>Bacillus subtilis</topic><topic>Bacteria - drug effects</topic><topic>Bacteria - enzymology</topic><topic>Bacteria - genetics</topic><topic>Biology and Life Sciences</topic><topic>Carbohydrate metabolism</topic><topic>Carbohydrates</topic><topic>Computer Simulation</topic><topic>Consumption</topic><topic>Corn</topic><topic>Crops, Agricultural - microbiology</topic><topic>Datasets</topic><topic>Disease control</topic><topic>Diseases and pests</topic><topic>Drug Discovery</topic><topic>E coli</topic><topic>Enzymatic activity</topic><topic>Enzymes</topic><topic>Escherichia coli</topic><topic>Fungi</topic><topic>Fungi - drug effects</topic><topic>Fungi - enzymology</topic><topic>Fungi - genetics</topic><topic>Genetic aspects</topic><topic>Genome, Bacterial</topic><topic>Genome, Fungal</topic><topic>Genomes</topic><topic>Glycine max</topic><topic>Glycine max - microbiology</topic><topic>Health aspects</topic><topic>Health risks</topic><topic>Homo sapiens</topic><topic>Homology</topic><topic>Humans</topic><topic>Medicine and Health Sciences</topic><topic>Metabolism</topic><topic>Mining</topic><topic>Molecular chains</topic><topic>Organisms</topic><topic>Oxidative stress</topic><topic>Parasites</topic><topic>Pathogens</topic><topic>Pest control</topic><topic>Pesticides</topic><topic>Pesticides - pharmacology</topic><topic>Pesticides - toxicity</topic><topic>Physiological aspects</topic><topic>Phytopathogenic bacteria</topic><topic>Phytopathogenic fungi</topic><topic>Plant Breeding</topic><topic>Plant diseases</topic><topic>Plant Diseases - microbiology</topic><topic>Plant Diseases - prevention &amp; control</topic><topic>Protein structure</topic><topic>Proteins</topic><topic>Pseudomonas syringae</topic><topic>Research and Analysis Methods</topic><topic>Solanum lycopersicum</topic><topic>Solanum lycopersicum - microbiology</topic><topic>Soybeans</topic><topic>Structural forms</topic><topic>Target recognition</topic><topic>Tertiary structure</topic><topic>Tomatoes</topic><topic>Trichoderma harzianum</topic><topic>Zea mays</topic><topic>Zea mays - microbiology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>da Silva, Rangeline Azevedo</creatorcontrib><creatorcontrib>Pereira, Leandro de Mattos</creatorcontrib><creatorcontrib>Silveira, Melise Chaves</creatorcontrib><creatorcontrib>Jardim, Rodrigo</creatorcontrib><creatorcontrib>de Miranda, Antonio Basilio</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>ProQuest Nursing and Allied Health Journals</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health &amp; Medical Collection (Proquest)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>ProQuest Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Database‎ (1962 - current)</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Materials Science Database</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>Biological Sciences</collection><collection>Agriculture Science Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>ProQuest Engineering Database</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><collection>Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>da Silva, Rangeline Azevedo</au><au>Pereira, Leandro de Mattos</au><au>Silveira, Melise Chaves</au><au>Jardim, Rodrigo</au><au>de Miranda, Antonio Basilio</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mining of potential drug targets through the identification of essential and analogous enzymes in the genomes of pathogens of Glycine max, Zea mays and Solanum lycopersicum</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2018-05-25</date><risdate>2018</risdate><volume>13</volume><issue>5</issue><spage>e0197511</spage><pages>e0197511-</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><notes>Competing Interests: The authors have declared that no competing interests exist.</notes><abstract>Pesticides are one of the most widely used pest and disease control measures in plant crops and their indiscriminate use poses a direct risk to the health of populations and environment around the world. As a result, there is a great need for the development of new, less toxic molecules to be employed against plant pathogens. In this work, we employed an in silico approach to study the genes coding for enzymes of the genomes of three commercially important plants, soybean (Glycine max), tomato (Solanum lycopersicum) and corn (Zea mays), as well as 15 plant pathogens (4 bacteria and 11 fungi), focusing on revealing a set of essential and non-homologous isofunctional enzymes (NISEs) that could be prioritized as drug targets. By combining sequence and structural data, we obtained an initial set of 568 cases of analogy, of which 97 were validated and further refined, revealing a subset of 29 essential enzymatic activities with a total of 119 different structural forms, most belonging to central metabolic routes, including the carbohydrate metabolism, the metabolism of amino acids, among others. Further, another subset of 26 enzymatic activities possess a tertiary structure specific for the pathogen, not present in plants, men and Apis mellifera, which may be of importance for the development of specific enzymatic inhibitors against plant diseases that are less harmful to humans and the environment.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>29799863</pmid><doi>10.1371/journal.pone.0197511</doi><tpages>e0197511</tpages><orcidid>https://orcid.org/0000-0001-6903-1137</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1932-6203
ispartof PloS one, 2018-05, Vol.13 (5), p.e0197511
issn 1932-6203
1932-6203
language eng
recordid cdi_plos_journals_2044300515
source Publicly Available Content Database; PubMed Central
subjects Amino acids
Animals
Anti-Infective Agents - chemistry
Anti-Infective Agents - pharmacology
Apis mellifera
Bacillus subtilis
Bacteria - drug effects
Bacteria - enzymology
Bacteria - genetics
Biology and Life Sciences
Carbohydrate metabolism
Carbohydrates
Computer Simulation
Consumption
Corn
Crops, Agricultural - microbiology
Datasets
Disease control
Diseases and pests
Drug Discovery
E coli
Enzymatic activity
Enzymes
Escherichia coli
Fungi
Fungi - drug effects
Fungi - enzymology
Fungi - genetics
Genetic aspects
Genome, Bacterial
Genome, Fungal
Genomes
Glycine max
Glycine max - microbiology
Health aspects
Health risks
Homo sapiens
Homology
Humans
Medicine and Health Sciences
Metabolism
Mining
Molecular chains
Organisms
Oxidative stress
Parasites
Pathogens
Pest control
Pesticides
Pesticides - pharmacology
Pesticides - toxicity
Physiological aspects
Phytopathogenic bacteria
Phytopathogenic fungi
Plant Breeding
Plant diseases
Plant Diseases - microbiology
Plant Diseases - prevention & control
Protein structure
Proteins
Pseudomonas syringae
Research and Analysis Methods
Solanum lycopersicum
Solanum lycopersicum - microbiology
Soybeans
Structural forms
Target recognition
Tertiary structure
Tomatoes
Trichoderma harzianum
Zea mays
Zea mays - microbiology
title Mining of potential drug targets through the identification of essential and analogous enzymes in the genomes of pathogens of Glycine max, Zea mays and Solanum lycopersicum
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-09-23T00%3A15%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mining%20of%20potential%20drug%20targets%20through%20the%20identification%20of%20essential%20and%20analogous%20enzymes%20in%20the%20genomes%20of%20pathogens%20of%20Glycine%20max,%20Zea%20mays%20and%20Solanum%20lycopersicum&rft.jtitle=PloS%20one&rft.au=da%20Silva,%20Rangeline%20Azevedo&rft.date=2018-05-25&rft.volume=13&rft.issue=5&rft.spage=e0197511&rft.pages=e0197511-&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0197511&rft_dat=%3Cgale_plos_%3EA540296283%3C/gale_plos_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c692t-e2bb11c1fb4410db75eb6edfe529064d83d0fe9124107e28be7b3362791808163%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2044300515&rft_id=info:pmid/29799863&rft_galeid=A540296283&rfr_iscdi=true