Loading…

Genomic introgression mapping of field-derived multiple-anthelmintic resistance in Teladorsagia circumcincta

Preventive chemotherapy has long been practiced against nematode parasites of livestock, leading to widespread drug resistance, and is increasingly being adopted for eradication of human parasitic nematodes even though it is similarly likely to lead to drug resistance. Given that the genetic archite...

Full description

Saved in:
Bibliographic Details
Published in:PLoS genetics 2017-06, Vol.13 (6), p.e1006857-e1006857
Main Authors: Choi, Young-Jun, Bisset, Stewart A, Doyle, Stephen R, Hallsworth-Pepin, Kymberlie, Martin, John, Grant, Warwick N, Mitreva, Makedonka
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c726t-9c865319799315e28cb3e64bf2569ece337b99e2a83af31c3760759eb526fa173
cites cdi_FETCH-LOGICAL-c726t-9c865319799315e28cb3e64bf2569ece337b99e2a83af31c3760759eb526fa173
container_end_page e1006857
container_issue 6
container_start_page e1006857
container_title PLoS genetics
container_volume 13
creator Choi, Young-Jun
Bisset, Stewart A
Doyle, Stephen R
Hallsworth-Pepin, Kymberlie
Martin, John
Grant, Warwick N
Mitreva, Makedonka
description Preventive chemotherapy has long been practiced against nematode parasites of livestock, leading to widespread drug resistance, and is increasingly being adopted for eradication of human parasitic nematodes even though it is similarly likely to lead to drug resistance. Given that the genetic architecture of resistance is poorly understood for any nematode, we have analyzed multidrug resistant Teladorsagia circumcincta, a major parasite of sheep, as a model for analysis of resistance selection. We introgressed a field-derived multiresistant genotype into a partially inbred susceptible genetic background (through repeated backcrossing and drug selection) and performed genome-wide scans in the backcross progeny and drug-selected F2 populations to identify the major genes responsible for the multidrug resistance. We identified variation linking candidate resistance genes to each drug class. Putative mechanisms included target site polymorphism, changes in likely regulatory regions and copy number variation in efflux transporters. This work elucidates the genetic architecture of multiple anthelmintic resistance in a parasitic nematode for the first time and establishes a framework for future studies of anthelmintic resistance in nematode parasites of humans.
doi_str_mv 10.1371/journal.pgen.1006857
format article
fullrecord <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_1919501846</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A497485211</galeid><doaj_id>oai_doaj_org_article_f4ecd10716c6444f873f1284ae64caea</doaj_id><sourcerecordid>A497485211</sourcerecordid><originalsourceid>FETCH-LOGICAL-c726t-9c865319799315e28cb3e64bf2569ece337b99e2a83af31c3760759eb526fa173</originalsourceid><addsrcrecordid>eNqVk9FqFDEUhgdRbK2-geiAIHoxazKZTCY3QilaF4oFrd6GbOZkNksmmSYzRd_ebHdbdqQXSi4Sku__T85JTpa9xGiBCcMfNn4KTtrF0IFbYITqhrJH2TGmlBSsQtXjg_VR9izGDUKENpw9zY7Kpq6qhvDjzJ6D871RuXFj8F2AGI13eS-Hwbgu9zrXBmxbtBDMDbR5P9nRDBYK6cY12D7JkjjJTBylU5B88iuwsvUhys7IXJmgpl4Zp0b5PHuipY3wYj-fZD8-f7o6-1JcXJ4vz04vCsXKeiy4ampKMGecE0yhbNSKQF2tdElrDgoIYSvOoZQNkZpgRViNGOWwomWtJWbkJHu98x2sj2JfqCgwx5wi3FR1IpY7ovVyI4Zgehl-Cy-NuN3woRMypMwsCF2BajFiuFapaJVuGNG4bCqZrqQkyOT1cR9tWvXQKkiVlHZmOj9xZi06fyMoRYyUKBm82xsEfz1BHEVvogJrpQM_3d6bEE54yRP65i_04ez2VCdTAsZpn-Kqrak4rTirGlpinKjFA1QaLaQP4R1ok_ZngvczQWJG-DV2copRLL9_-w_267-zlz_n7NsDdg3Sjuvo7TSmXxvnYLUDVfAxBtD3D4KR2DbQXeXEtoHEvoGS7NXhY96L7jqG_AG17xY1</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1919501846</pqid></control><display><type>article</type><title>Genomic introgression mapping of field-derived multiple-anthelmintic resistance in Teladorsagia circumcincta</title><source>Publicly Available Content Database</source><source>PubMed Central</source><creator>Choi, Young-Jun ; Bisset, Stewart A ; Doyle, Stephen R ; Hallsworth-Pepin, Kymberlie ; Martin, John ; Grant, Warwick N ; Mitreva, Makedonka</creator><contributor>Andersen, Erik C</contributor><creatorcontrib>Choi, Young-Jun ; Bisset, Stewart A ; Doyle, Stephen R ; Hallsworth-Pepin, Kymberlie ; Martin, John ; Grant, Warwick N ; Mitreva, Makedonka ; Andersen, Erik C</creatorcontrib><description>Preventive chemotherapy has long been practiced against nematode parasites of livestock, leading to widespread drug resistance, and is increasingly being adopted for eradication of human parasitic nematodes even though it is similarly likely to lead to drug resistance. Given that the genetic architecture of resistance is poorly understood for any nematode, we have analyzed multidrug resistant Teladorsagia circumcincta, a major parasite of sheep, as a model for analysis of resistance selection. We introgressed a field-derived multiresistant genotype into a partially inbred susceptible genetic background (through repeated backcrossing and drug selection) and performed genome-wide scans in the backcross progeny and drug-selected F2 populations to identify the major genes responsible for the multidrug resistance. We identified variation linking candidate resistance genes to each drug class. Putative mechanisms included target site polymorphism, changes in likely regulatory regions and copy number variation in efflux transporters. This work elucidates the genetic architecture of multiple anthelmintic resistance in a parasitic nematode for the first time and establishes a framework for future studies of anthelmintic resistance in nematode parasites of humans.</description><identifier>ISSN: 1553-7404</identifier><identifier>ISSN: 1553-7390</identifier><identifier>EISSN: 1553-7404</identifier><identifier>DOI: 10.1371/journal.pgen.1006857</identifier><identifier>PMID: 28644839</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Animals ; Anthelmintic agents ; Anthelmintics ; Anthelmintics - therapeutic use ; Bioinformatics ; Biology and Life Sciences ; Chemotherapy ; Chromosome Mapping ; Copy number ; DNA Copy Number Variations - genetics ; Dosage and administration ; Drug resistance ; Drug Resistance - genetics ; Gene expression ; Gene mapping ; Gene polymorphism ; Genes ; Genetic aspects ; Genomes ; Genomics ; Genotype ; Grants ; Health aspects ; Humans ; Inbreeding ; Livestock ; Medicine ; Microbial drug resistance ; Multidrug resistance ; Parasites ; Population ; Regulatory sequences ; Research and Analysis Methods ; Roundworms ; Sheep - parasitology ; Soil sciences ; Studies ; Trichostrongyloidea - drug effects ; Trichostrongyloidea - genetics ; Trichostrongyloidea - pathogenicity ; Trichostrongyloidiasis - drug therapy ; Trichostrongyloidiasis - genetics ; Trichostrongyloidiasis - parasitology</subject><ispartof>PLoS genetics, 2017-06, Vol.13 (6), p.e1006857-e1006857</ispartof><rights>COPYRIGHT 2017 Public Library of Science</rights><rights>2017 Public Library of Science. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited: . PLoS Genet 13(6): e1006857. https://doi.org/10.1371/journal.pgen.1006857</rights><rights>2017 Choi et al 2017 Choi et al</rights><rights>2017 Public Library of Science. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited: . PLoS Genet 13(6): e1006857. https://doi.org/10.1371/journal.pgen.1006857</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c726t-9c865319799315e28cb3e64bf2569ece337b99e2a83af31c3760759eb526fa173</citedby><cites>FETCH-LOGICAL-c726t-9c865319799315e28cb3e64bf2569ece337b99e2a83af31c3760759eb526fa173</cites><orcidid>0000-0001-9167-7532 ; 0000-0002-1187-5270</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/1919501846/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/1919501846?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,315,733,786,790,891,25783,27957,27958,37047,37048,44625,53827,53829,75483</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28644839$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Andersen, Erik C</contributor><creatorcontrib>Choi, Young-Jun</creatorcontrib><creatorcontrib>Bisset, Stewart A</creatorcontrib><creatorcontrib>Doyle, Stephen R</creatorcontrib><creatorcontrib>Hallsworth-Pepin, Kymberlie</creatorcontrib><creatorcontrib>Martin, John</creatorcontrib><creatorcontrib>Grant, Warwick N</creatorcontrib><creatorcontrib>Mitreva, Makedonka</creatorcontrib><title>Genomic introgression mapping of field-derived multiple-anthelmintic resistance in Teladorsagia circumcincta</title><title>PLoS genetics</title><addtitle>PLoS Genet</addtitle><description>Preventive chemotherapy has long been practiced against nematode parasites of livestock, leading to widespread drug resistance, and is increasingly being adopted for eradication of human parasitic nematodes even though it is similarly likely to lead to drug resistance. Given that the genetic architecture of resistance is poorly understood for any nematode, we have analyzed multidrug resistant Teladorsagia circumcincta, a major parasite of sheep, as a model for analysis of resistance selection. We introgressed a field-derived multiresistant genotype into a partially inbred susceptible genetic background (through repeated backcrossing and drug selection) and performed genome-wide scans in the backcross progeny and drug-selected F2 populations to identify the major genes responsible for the multidrug resistance. We identified variation linking candidate resistance genes to each drug class. Putative mechanisms included target site polymorphism, changes in likely regulatory regions and copy number variation in efflux transporters. This work elucidates the genetic architecture of multiple anthelmintic resistance in a parasitic nematode for the first time and establishes a framework for future studies of anthelmintic resistance in nematode parasites of humans.</description><subject>Animals</subject><subject>Anthelmintic agents</subject><subject>Anthelmintics</subject><subject>Anthelmintics - therapeutic use</subject><subject>Bioinformatics</subject><subject>Biology and Life Sciences</subject><subject>Chemotherapy</subject><subject>Chromosome Mapping</subject><subject>Copy number</subject><subject>DNA Copy Number Variations - genetics</subject><subject>Dosage and administration</subject><subject>Drug resistance</subject><subject>Drug Resistance - genetics</subject><subject>Gene expression</subject><subject>Gene mapping</subject><subject>Gene polymorphism</subject><subject>Genes</subject><subject>Genetic aspects</subject><subject>Genomes</subject><subject>Genomics</subject><subject>Genotype</subject><subject>Grants</subject><subject>Health aspects</subject><subject>Humans</subject><subject>Inbreeding</subject><subject>Livestock</subject><subject>Medicine</subject><subject>Microbial drug resistance</subject><subject>Multidrug resistance</subject><subject>Parasites</subject><subject>Population</subject><subject>Regulatory sequences</subject><subject>Research and Analysis Methods</subject><subject>Roundworms</subject><subject>Sheep - parasitology</subject><subject>Soil sciences</subject><subject>Studies</subject><subject>Trichostrongyloidea - drug effects</subject><subject>Trichostrongyloidea - genetics</subject><subject>Trichostrongyloidea - pathogenicity</subject><subject>Trichostrongyloidiasis - drug therapy</subject><subject>Trichostrongyloidiasis - genetics</subject><subject>Trichostrongyloidiasis - parasitology</subject><issn>1553-7404</issn><issn>1553-7390</issn><issn>1553-7404</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNqVk9FqFDEUhgdRbK2-geiAIHoxazKZTCY3QilaF4oFrd6GbOZkNksmmSYzRd_ebHdbdqQXSi4Sku__T85JTpa9xGiBCcMfNn4KTtrF0IFbYITqhrJH2TGmlBSsQtXjg_VR9izGDUKENpw9zY7Kpq6qhvDjzJ6D871RuXFj8F2AGI13eS-Hwbgu9zrXBmxbtBDMDbR5P9nRDBYK6cY12D7JkjjJTBylU5B88iuwsvUhys7IXJmgpl4Zp0b5PHuipY3wYj-fZD8-f7o6-1JcXJ4vz04vCsXKeiy4ampKMGecE0yhbNSKQF2tdElrDgoIYSvOoZQNkZpgRViNGOWwomWtJWbkJHu98x2sj2JfqCgwx5wi3FR1IpY7ovVyI4Zgehl-Cy-NuN3woRMypMwsCF2BajFiuFapaJVuGNG4bCqZrqQkyOT1cR9tWvXQKkiVlHZmOj9xZi06fyMoRYyUKBm82xsEfz1BHEVvogJrpQM_3d6bEE54yRP65i_04ez2VCdTAsZpn-Kqrak4rTirGlpinKjFA1QaLaQP4R1ok_ZngvczQWJG-DV2copRLL9_-w_267-zlz_n7NsDdg3Sjuvo7TSmXxvnYLUDVfAxBtD3D4KR2DbQXeXEtoHEvoGS7NXhY96L7jqG_AG17xY1</recordid><startdate>20170623</startdate><enddate>20170623</enddate><creator>Choi, Young-Jun</creator><creator>Bisset, Stewart A</creator><creator>Doyle, Stephen R</creator><creator>Hallsworth-Pepin, Kymberlie</creator><creator>Martin, John</creator><creator>Grant, Warwick N</creator><creator>Mitreva, Makedonka</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISN</scope><scope>ISR</scope><scope>3V.</scope><scope>7QP</scope><scope>7QR</scope><scope>7SS</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-9167-7532</orcidid><orcidid>https://orcid.org/0000-0002-1187-5270</orcidid></search><sort><creationdate>20170623</creationdate><title>Genomic introgression mapping of field-derived multiple-anthelmintic resistance in Teladorsagia circumcincta</title><author>Choi, Young-Jun ; Bisset, Stewart A ; Doyle, Stephen R ; Hallsworth-Pepin, Kymberlie ; Martin, John ; Grant, Warwick N ; Mitreva, Makedonka</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c726t-9c865319799315e28cb3e64bf2569ece337b99e2a83af31c3760759eb526fa173</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Animals</topic><topic>Anthelmintic agents</topic><topic>Anthelmintics</topic><topic>Anthelmintics - therapeutic use</topic><topic>Bioinformatics</topic><topic>Biology and Life Sciences</topic><topic>Chemotherapy</topic><topic>Chromosome Mapping</topic><topic>Copy number</topic><topic>DNA Copy Number Variations - genetics</topic><topic>Dosage and administration</topic><topic>Drug resistance</topic><topic>Drug Resistance - genetics</topic><topic>Gene expression</topic><topic>Gene mapping</topic><topic>Gene polymorphism</topic><topic>Genes</topic><topic>Genetic aspects</topic><topic>Genomes</topic><topic>Genomics</topic><topic>Genotype</topic><topic>Grants</topic><topic>Health aspects</topic><topic>Humans</topic><topic>Inbreeding</topic><topic>Livestock</topic><topic>Medicine</topic><topic>Microbial drug resistance</topic><topic>Multidrug resistance</topic><topic>Parasites</topic><topic>Population</topic><topic>Regulatory sequences</topic><topic>Research and Analysis Methods</topic><topic>Roundworms</topic><topic>Sheep - parasitology</topic><topic>Soil sciences</topic><topic>Studies</topic><topic>Trichostrongyloidea - drug effects</topic><topic>Trichostrongyloidea - genetics</topic><topic>Trichostrongyloidea - pathogenicity</topic><topic>Trichostrongyloidiasis - drug therapy</topic><topic>Trichostrongyloidiasis - genetics</topic><topic>Trichostrongyloidiasis - parasitology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Choi, Young-Jun</creatorcontrib><creatorcontrib>Bisset, Stewart A</creatorcontrib><creatorcontrib>Doyle, Stephen R</creatorcontrib><creatorcontrib>Hallsworth-Pepin, Kymberlie</creatorcontrib><creatorcontrib>Martin, John</creatorcontrib><creatorcontrib>Grant, Warwick N</creatorcontrib><creatorcontrib>Mitreva, Makedonka</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Canada</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Biological Sciences</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>Directory of Open Access Journals</collection><jtitle>PLoS genetics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Choi, Young-Jun</au><au>Bisset, Stewart A</au><au>Doyle, Stephen R</au><au>Hallsworth-Pepin, Kymberlie</au><au>Martin, John</au><au>Grant, Warwick N</au><au>Mitreva, Makedonka</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Genomic introgression mapping of field-derived multiple-anthelmintic resistance in Teladorsagia circumcincta</atitle><jtitle>PLoS genetics</jtitle><addtitle>PLoS Genet</addtitle><date>2017-06-23</date><risdate>2017</risdate><volume>13</volume><issue>6</issue><spage>e1006857</spage><epage>e1006857</epage><pages>e1006857-e1006857</pages><issn>1553-7404</issn><issn>1553-7390</issn><eissn>1553-7404</eissn><notes>new_version</notes><notes>ObjectType-Article-1</notes><notes>SourceType-Scholarly Journals-1</notes><notes>ObjectType-Feature-2</notes><notes>content type line 23</notes><notes>Conceptualization: SAB WNG MM.Data curation: KHP JM.Formal analysis: YJC SAB SRD KHP JM.Funding acquisition: SAB SRD WNG MM.Investigation: YJC SAB SRD.Resources: SAB WNG MM.Supervision: WNG MM.Visualization: YJC SAB.Writing – original draft: YJC SAB SRD JM WNG MM.Writing – review &amp; editing: YJC SAB SRD WNG MM.</notes><notes>Current address: Wellcome Trust Sanger Institute, Hinxton, Cambridge, United Kingdom</notes><notes>The authors have declared that no competing interests exist.</notes><abstract>Preventive chemotherapy has long been practiced against nematode parasites of livestock, leading to widespread drug resistance, and is increasingly being adopted for eradication of human parasitic nematodes even though it is similarly likely to lead to drug resistance. Given that the genetic architecture of resistance is poorly understood for any nematode, we have analyzed multidrug resistant Teladorsagia circumcincta, a major parasite of sheep, as a model for analysis of resistance selection. We introgressed a field-derived multiresistant genotype into a partially inbred susceptible genetic background (through repeated backcrossing and drug selection) and performed genome-wide scans in the backcross progeny and drug-selected F2 populations to identify the major genes responsible for the multidrug resistance. We identified variation linking candidate resistance genes to each drug class. Putative mechanisms included target site polymorphism, changes in likely regulatory regions and copy number variation in efflux transporters. This work elucidates the genetic architecture of multiple anthelmintic resistance in a parasitic nematode for the first time and establishes a framework for future studies of anthelmintic resistance in nematode parasites of humans.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>28644839</pmid><doi>10.1371/journal.pgen.1006857</doi><orcidid>https://orcid.org/0000-0001-9167-7532</orcidid><orcidid>https://orcid.org/0000-0002-1187-5270</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1553-7404
ispartof PLoS genetics, 2017-06, Vol.13 (6), p.e1006857-e1006857
issn 1553-7404
1553-7390
1553-7404
language eng
recordid cdi_plos_journals_1919501846
source Publicly Available Content Database; PubMed Central
subjects Animals
Anthelmintic agents
Anthelmintics
Anthelmintics - therapeutic use
Bioinformatics
Biology and Life Sciences
Chemotherapy
Chromosome Mapping
Copy number
DNA Copy Number Variations - genetics
Dosage and administration
Drug resistance
Drug Resistance - genetics
Gene expression
Gene mapping
Gene polymorphism
Genes
Genetic aspects
Genomes
Genomics
Genotype
Grants
Health aspects
Humans
Inbreeding
Livestock
Medicine
Microbial drug resistance
Multidrug resistance
Parasites
Population
Regulatory sequences
Research and Analysis Methods
Roundworms
Sheep - parasitology
Soil sciences
Studies
Trichostrongyloidea - drug effects
Trichostrongyloidea - genetics
Trichostrongyloidea - pathogenicity
Trichostrongyloidiasis - drug therapy
Trichostrongyloidiasis - genetics
Trichostrongyloidiasis - parasitology
title Genomic introgression mapping of field-derived multiple-anthelmintic resistance in Teladorsagia circumcincta
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-09-29T01%3A21%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Genomic%20introgression%20mapping%20of%20field-derived%20multiple-anthelmintic%20resistance%20in%20Teladorsagia%20circumcincta&rft.jtitle=PLoS%20genetics&rft.au=Choi,%20Young-Jun&rft.date=2017-06-23&rft.volume=13&rft.issue=6&rft.spage=e1006857&rft.epage=e1006857&rft.pages=e1006857-e1006857&rft.issn=1553-7404&rft.eissn=1553-7404&rft_id=info:doi/10.1371/journal.pgen.1006857&rft_dat=%3Cgale_plos_%3EA497485211%3C/gale_plos_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c726t-9c865319799315e28cb3e64bf2569ece337b99e2a83af31c3760759eb526fa173%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1919501846&rft_id=info:pmid/28644839&rft_galeid=A497485211&rfr_iscdi=true