Loading…

Quantifying the Determinants of Evolutionary Dynamics Leading to Drug Resistance

The emergence of drug resistant pathogens is a serious public health problem. It is a long-standing goal to predict rates of resistance evolution and design optimal treatment strategies accordingly. To this end, it is crucial to reveal the underlying causes of drug-specific differences in the evolut...

Full description

Saved in:
Bibliographic Details
Published in:PLoS biology 2015-11, Vol.13 (11), p.e1002299-e1002299
Main Authors: Chevereau, Guillaume, Dravecká, Marta, Batur, Tugce, Guvenek, Aysegul, Ayhan, Dilay Hazal, Toprak, Erdal, Bollenbach, Tobias
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c733t-456c9a16fa3d5cb9430110ddaf9e9a36c9bdb7c9178d4610a19be6b2c43810093
cites cdi_FETCH-LOGICAL-c733t-456c9a16fa3d5cb9430110ddaf9e9a36c9bdb7c9178d4610a19be6b2c43810093
container_end_page e1002299
container_issue 11
container_start_page e1002299
container_title PLoS biology
container_volume 13
creator Chevereau, Guillaume
Dravecká, Marta
Batur, Tugce
Guvenek, Aysegul
Ayhan, Dilay Hazal
Toprak, Erdal
Bollenbach, Tobias
description The emergence of drug resistant pathogens is a serious public health problem. It is a long-standing goal to predict rates of resistance evolution and design optimal treatment strategies accordingly. To this end, it is crucial to reveal the underlying causes of drug-specific differences in the evolutionary dynamics leading to resistance. However, it remains largely unknown why the rates of resistance evolution via spontaneous mutations and the diversity of mutational paths vary substantially between drugs. Here we comprehensively quantify the distribution of fitness effects (DFE) of mutations, a key determinant of evolutionary dynamics, in the presence of eight antibiotics representing the main modes of action. Using precise high-throughput fitness measurements for genome-wide Escherichia coli gene deletion strains, we find that the width of the DFE varies dramatically between antibiotics and, contrary to conventional wisdom, for some drugs the DFE width is lower than in the absence of stress. We show that this previously underappreciated divergence in DFE width among antibiotics is largely caused by their distinct drug-specific dose-response characteristics. Unlike the DFE, the magnitude of the changes in tolerated drug concentration resulting from genome-wide mutations is similar for most drugs but exceptionally small for the antibiotic nitrofurantoin, i.e., mutations generally have considerably smaller resistance effects for nitrofurantoin than for other drugs. A population genetics model predicts that resistance evolution for drugs with this property is severely limited and confined to reproducible mutational paths. We tested this prediction in laboratory evolution experiments using the "morbidostat", a device for evolving bacteria in well-controlled drug environments. Nitrofurantoin resistance indeed evolved extremely slowly via reproducible mutations-an almost paradoxical behavior since this drug causes DNA damage and increases the mutation rate. Overall, we identified novel quantitative characteristics of the evolutionary landscape that provide the conceptual foundation for predicting the dynamics of drug resistance evolution.
doi_str_mv 10.1371/journal.pbio.1002299
format article
fullrecord <record><control><sourceid>proquest_plos_</sourceid><recordid>TN_cdi_plos_journals_1749659813</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_1c92540a59714468994d9ab8cffe5592</doaj_id><sourcerecordid>1735904109</sourcerecordid><originalsourceid>FETCH-LOGICAL-c733t-456c9a16fa3d5cb9430110ddaf9e9a36c9bdb7c9178d4610a19be6b2c43810093</originalsourceid><addsrcrecordid>eNpVUctu2zAQJIoWTZr2D4pWx1zscMWHxEuBIk6bAAb6QHsmViTl0JBIl5QC-O8r20qQnEjszs7O7BDyEegSWAVX2zimgN1y1_i4BErLUqlX5BwEF4uqrsXrZ_8z8i7n7RFT1m_JWSlFDZSJc_Lz14hh8O3eh00x3Lti5QaXeh-mai5iW9w8xG4cfAyY9sVqH7D3Jhdrh_Y4EYtVGjfFb5d9HjAY9568abHL7sP8XpC_327-XN8u1j--311_XS9Mxdiw4EIahSBbZFaYRnFGAai12CqnkE3NxjaVUVDVlkugCKpxsikNZ5NyqtgF-Xzi3XUx6_kYWUPFlRSqBjYh7k4IG3Grd8n3kwUd0etjIaaNxjR40zkNRpWCUxSqAs5lrRS3CpvatK0TQpUT15d529j0zhoXhoTdC9KXneDv9SY-aC4FMMkngsuZIMV_o8uD7n02ruswuDgedDOhKIejM36CmhRzTq59WgNUH6J_dKsP0es5-mns03OJT0OPWbP_FsmtfQ</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1735904109</pqid></control><display><type>article</type><title>Quantifying the Determinants of Evolutionary Dynamics Leading to Drug Resistance</title><source>Publicly Available Content Database</source><source>PubMed Central</source><creator>Chevereau, Guillaume ; Dravecká, Marta ; Batur, Tugce ; Guvenek, Aysegul ; Ayhan, Dilay Hazal ; Toprak, Erdal ; Bollenbach, Tobias</creator><contributor>Balaban, Nathalie</contributor><creatorcontrib>Chevereau, Guillaume ; Dravecká, Marta ; Batur, Tugce ; Guvenek, Aysegul ; Ayhan, Dilay Hazal ; Toprak, Erdal ; Bollenbach, Tobias ; Balaban, Nathalie</creatorcontrib><description>The emergence of drug resistant pathogens is a serious public health problem. It is a long-standing goal to predict rates of resistance evolution and design optimal treatment strategies accordingly. To this end, it is crucial to reveal the underlying causes of drug-specific differences in the evolutionary dynamics leading to resistance. However, it remains largely unknown why the rates of resistance evolution via spontaneous mutations and the diversity of mutational paths vary substantially between drugs. Here we comprehensively quantify the distribution of fitness effects (DFE) of mutations, a key determinant of evolutionary dynamics, in the presence of eight antibiotics representing the main modes of action. Using precise high-throughput fitness measurements for genome-wide Escherichia coli gene deletion strains, we find that the width of the DFE varies dramatically between antibiotics and, contrary to conventional wisdom, for some drugs the DFE width is lower than in the absence of stress. We show that this previously underappreciated divergence in DFE width among antibiotics is largely caused by their distinct drug-specific dose-response characteristics. Unlike the DFE, the magnitude of the changes in tolerated drug concentration resulting from genome-wide mutations is similar for most drugs but exceptionally small for the antibiotic nitrofurantoin, i.e., mutations generally have considerably smaller resistance effects for nitrofurantoin than for other drugs. A population genetics model predicts that resistance evolution for drugs with this property is severely limited and confined to reproducible mutational paths. We tested this prediction in laboratory evolution experiments using the "morbidostat", a device for evolving bacteria in well-controlled drug environments. Nitrofurantoin resistance indeed evolved extremely slowly via reproducible mutations-an almost paradoxical behavior since this drug causes DNA damage and increases the mutation rate. Overall, we identified novel quantitative characteristics of the evolutionary landscape that provide the conceptual foundation for predicting the dynamics of drug resistance evolution.</description><identifier>ISSN: 1545-7885</identifier><identifier>ISSN: 1544-9173</identifier><identifier>EISSN: 1545-7885</identifier><identifier>DOI: 10.1371/journal.pbio.1002299</identifier><identifier>PMID: 26581035</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Algorithms ; Anti-Bacterial Agents - pharmacology ; Antibiotics ; Bacteria ; Drug dosages ; Drug resistance ; Drug Resistance, Bacterial ; Drug Resistance, Multiple, Bacterial ; E coli ; Escherichia coli - drug effects ; Escherichia coli - genetics ; Escherichia coli - growth &amp; development ; Escherichia coli - metabolism ; Escherichia coli K12 - drug effects ; Escherichia coli K12 - genetics ; Escherichia coli K12 - metabolism ; Escherichia coli Proteins - genetics ; Escherichia coli Proteins - metabolism ; Evolution, Molecular ; Experiments ; Gene Deletion ; Genetic Fitness - drug effects ; Genomes ; Growth rate ; Microbial Sensitivity Tests ; Models, Genetic ; Mutagens - pharmacology ; Mutation ; Mutation - drug effects ; Mutation Rate ; Nitrofurantoin - pharmacology ; Population genetics ; Reproducibility of Results</subject><ispartof>PLoS biology, 2015-11, Vol.13 (11), p.e1002299-e1002299</ispartof><rights>2015 Chevereau et al 2015 Chevereau et al</rights><rights>2015 Public Library of Science. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited: Chevereau G, Dravecká M, Batur T, Guvenek A, Ayhan DH, Toprak E, et al. (2015) Quantifying the Determinants of Evolutionary Dynamics Leading to Drug Resistance. PLoS Biol 13(11): e1002299. doi:10.1371/journal.pbio.1002299</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c733t-456c9a16fa3d5cb9430110ddaf9e9a36c9bdb7c9178d4610a19be6b2c43810093</citedby><cites>FETCH-LOGICAL-c733t-456c9a16fa3d5cb9430110ddaf9e9a36c9bdb7c9178d4610a19be6b2c43810093</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4651364/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4651364/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,315,733,786,790,891,27957,27958,37048,53827,53829</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26581035$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Balaban, Nathalie</contributor><creatorcontrib>Chevereau, Guillaume</creatorcontrib><creatorcontrib>Dravecká, Marta</creatorcontrib><creatorcontrib>Batur, Tugce</creatorcontrib><creatorcontrib>Guvenek, Aysegul</creatorcontrib><creatorcontrib>Ayhan, Dilay Hazal</creatorcontrib><creatorcontrib>Toprak, Erdal</creatorcontrib><creatorcontrib>Bollenbach, Tobias</creatorcontrib><title>Quantifying the Determinants of Evolutionary Dynamics Leading to Drug Resistance</title><title>PLoS biology</title><addtitle>PLoS Biol</addtitle><description>The emergence of drug resistant pathogens is a serious public health problem. It is a long-standing goal to predict rates of resistance evolution and design optimal treatment strategies accordingly. To this end, it is crucial to reveal the underlying causes of drug-specific differences in the evolutionary dynamics leading to resistance. However, it remains largely unknown why the rates of resistance evolution via spontaneous mutations and the diversity of mutational paths vary substantially between drugs. Here we comprehensively quantify the distribution of fitness effects (DFE) of mutations, a key determinant of evolutionary dynamics, in the presence of eight antibiotics representing the main modes of action. Using precise high-throughput fitness measurements for genome-wide Escherichia coli gene deletion strains, we find that the width of the DFE varies dramatically between antibiotics and, contrary to conventional wisdom, for some drugs the DFE width is lower than in the absence of stress. We show that this previously underappreciated divergence in DFE width among antibiotics is largely caused by their distinct drug-specific dose-response characteristics. Unlike the DFE, the magnitude of the changes in tolerated drug concentration resulting from genome-wide mutations is similar for most drugs but exceptionally small for the antibiotic nitrofurantoin, i.e., mutations generally have considerably smaller resistance effects for nitrofurantoin than for other drugs. A population genetics model predicts that resistance evolution for drugs with this property is severely limited and confined to reproducible mutational paths. We tested this prediction in laboratory evolution experiments using the "morbidostat", a device for evolving bacteria in well-controlled drug environments. Nitrofurantoin resistance indeed evolved extremely slowly via reproducible mutations-an almost paradoxical behavior since this drug causes DNA damage and increases the mutation rate. Overall, we identified novel quantitative characteristics of the evolutionary landscape that provide the conceptual foundation for predicting the dynamics of drug resistance evolution.</description><subject>Algorithms</subject><subject>Anti-Bacterial Agents - pharmacology</subject><subject>Antibiotics</subject><subject>Bacteria</subject><subject>Drug dosages</subject><subject>Drug resistance</subject><subject>Drug Resistance, Bacterial</subject><subject>Drug Resistance, Multiple, Bacterial</subject><subject>E coli</subject><subject>Escherichia coli - drug effects</subject><subject>Escherichia coli - genetics</subject><subject>Escherichia coli - growth &amp; development</subject><subject>Escherichia coli - metabolism</subject><subject>Escherichia coli K12 - drug effects</subject><subject>Escherichia coli K12 - genetics</subject><subject>Escherichia coli K12 - metabolism</subject><subject>Escherichia coli Proteins - genetics</subject><subject>Escherichia coli Proteins - metabolism</subject><subject>Evolution, Molecular</subject><subject>Experiments</subject><subject>Gene Deletion</subject><subject>Genetic Fitness - drug effects</subject><subject>Genomes</subject><subject>Growth rate</subject><subject>Microbial Sensitivity Tests</subject><subject>Models, Genetic</subject><subject>Mutagens - pharmacology</subject><subject>Mutation</subject><subject>Mutation - drug effects</subject><subject>Mutation Rate</subject><subject>Nitrofurantoin - pharmacology</subject><subject>Population genetics</subject><subject>Reproducibility of Results</subject><issn>1545-7885</issn><issn>1544-9173</issn><issn>1545-7885</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>DOA</sourceid><recordid>eNpVUctu2zAQJIoWTZr2D4pWx1zscMWHxEuBIk6bAAb6QHsmViTl0JBIl5QC-O8r20qQnEjszs7O7BDyEegSWAVX2zimgN1y1_i4BErLUqlX5BwEF4uqrsXrZ_8z8i7n7RFT1m_JWSlFDZSJc_Lz14hh8O3eh00x3Lti5QaXeh-mai5iW9w8xG4cfAyY9sVqH7D3Jhdrh_Y4EYtVGjfFb5d9HjAY9568abHL7sP8XpC_327-XN8u1j--311_XS9Mxdiw4EIahSBbZFaYRnFGAai12CqnkE3NxjaVUVDVlkugCKpxsikNZ5NyqtgF-Xzi3XUx6_kYWUPFlRSqBjYh7k4IG3Grd8n3kwUd0etjIaaNxjR40zkNRpWCUxSqAs5lrRS3CpvatK0TQpUT15d529j0zhoXhoTdC9KXneDv9SY-aC4FMMkngsuZIMV_o8uD7n02ruswuDgedDOhKIejM36CmhRzTq59WgNUH6J_dKsP0es5-mns03OJT0OPWbP_FsmtfQ</recordid><startdate>20151101</startdate><enddate>20151101</enddate><creator>Chevereau, Guillaume</creator><creator>Dravecká, Marta</creator><creator>Batur, Tugce</creator><creator>Guvenek, Aysegul</creator><creator>Ayhan, Dilay Hazal</creator><creator>Toprak, Erdal</creator><creator>Bollenbach, Tobias</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><scope>CZG</scope></search><sort><creationdate>20151101</creationdate><title>Quantifying the Determinants of Evolutionary Dynamics Leading to Drug Resistance</title><author>Chevereau, Guillaume ; Dravecká, Marta ; Batur, Tugce ; Guvenek, Aysegul ; Ayhan, Dilay Hazal ; Toprak, Erdal ; Bollenbach, Tobias</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c733t-456c9a16fa3d5cb9430110ddaf9e9a36c9bdb7c9178d4610a19be6b2c43810093</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Algorithms</topic><topic>Anti-Bacterial Agents - pharmacology</topic><topic>Antibiotics</topic><topic>Bacteria</topic><topic>Drug dosages</topic><topic>Drug resistance</topic><topic>Drug Resistance, Bacterial</topic><topic>Drug Resistance, Multiple, Bacterial</topic><topic>E coli</topic><topic>Escherichia coli - drug effects</topic><topic>Escherichia coli - genetics</topic><topic>Escherichia coli - growth &amp; development</topic><topic>Escherichia coli - metabolism</topic><topic>Escherichia coli K12 - drug effects</topic><topic>Escherichia coli K12 - genetics</topic><topic>Escherichia coli K12 - metabolism</topic><topic>Escherichia coli Proteins - genetics</topic><topic>Escherichia coli Proteins - metabolism</topic><topic>Evolution, Molecular</topic><topic>Experiments</topic><topic>Gene Deletion</topic><topic>Genetic Fitness - drug effects</topic><topic>Genomes</topic><topic>Growth rate</topic><topic>Microbial Sensitivity Tests</topic><topic>Models, Genetic</topic><topic>Mutagens - pharmacology</topic><topic>Mutation</topic><topic>Mutation - drug effects</topic><topic>Mutation Rate</topic><topic>Nitrofurantoin - pharmacology</topic><topic>Population genetics</topic><topic>Reproducibility of Results</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chevereau, Guillaume</creatorcontrib><creatorcontrib>Dravecká, Marta</creatorcontrib><creatorcontrib>Batur, Tugce</creatorcontrib><creatorcontrib>Guvenek, Aysegul</creatorcontrib><creatorcontrib>Ayhan, Dilay Hazal</creatorcontrib><creatorcontrib>Toprak, Erdal</creatorcontrib><creatorcontrib>Bollenbach, Tobias</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><collection>PLoS Biology</collection><jtitle>PLoS biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chevereau, Guillaume</au><au>Dravecká, Marta</au><au>Batur, Tugce</au><au>Guvenek, Aysegul</au><au>Ayhan, Dilay Hazal</au><au>Toprak, Erdal</au><au>Bollenbach, Tobias</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Quantifying the Determinants of Evolutionary Dynamics Leading to Drug Resistance</atitle><jtitle>PLoS biology</jtitle><addtitle>PLoS Biol</addtitle><date>2015-11-01</date><risdate>2015</risdate><volume>13</volume><issue>11</issue><spage>e1002299</spage><epage>e1002299</epage><pages>e1002299-e1002299</pages><issn>1545-7885</issn><issn>1544-9173</issn><eissn>1545-7885</eissn><notes>ObjectType-Article-1</notes><notes>SourceType-Scholarly Journals-1</notes><notes>ObjectType-Feature-2</notes><notes>content type line 23</notes><notes>Current Address: Izmir Biomedicine and Genome Center, Dokuz Eylul University Health Campus, 35340 Balçova/Izmir, Turkey</notes><notes>Current Address: Rutgers, The State University of New Jersey, Graduate School of Biomedical Sciences, Newark, NJ</notes><notes>Conceived and designed the experiments: GC ET TBo. Performed the experiments: GC MD TBa AG DHA TBo. Analyzed the data: GC MD TBo. Wrote the paper: GC MD ET TBo.</notes><notes>Current Address: University of Massachusetts Amherst, Molecular and Cellular Biology Graduate Program, Amherst, MA</notes><notes>The authors have declared that no competing interests exist.</notes><notes>Current Address: University of Texas Southwestern Medical Center, Green Center for Systems Biology, Dallas, TX</notes><notes>Current Address: INSA de Strasbourg, 67084 Strasbourg cedex, France</notes><abstract>The emergence of drug resistant pathogens is a serious public health problem. It is a long-standing goal to predict rates of resistance evolution and design optimal treatment strategies accordingly. To this end, it is crucial to reveal the underlying causes of drug-specific differences in the evolutionary dynamics leading to resistance. However, it remains largely unknown why the rates of resistance evolution via spontaneous mutations and the diversity of mutational paths vary substantially between drugs. Here we comprehensively quantify the distribution of fitness effects (DFE) of mutations, a key determinant of evolutionary dynamics, in the presence of eight antibiotics representing the main modes of action. Using precise high-throughput fitness measurements for genome-wide Escherichia coli gene deletion strains, we find that the width of the DFE varies dramatically between antibiotics and, contrary to conventional wisdom, for some drugs the DFE width is lower than in the absence of stress. We show that this previously underappreciated divergence in DFE width among antibiotics is largely caused by their distinct drug-specific dose-response characteristics. Unlike the DFE, the magnitude of the changes in tolerated drug concentration resulting from genome-wide mutations is similar for most drugs but exceptionally small for the antibiotic nitrofurantoin, i.e., mutations generally have considerably smaller resistance effects for nitrofurantoin than for other drugs. A population genetics model predicts that resistance evolution for drugs with this property is severely limited and confined to reproducible mutational paths. We tested this prediction in laboratory evolution experiments using the "morbidostat", a device for evolving bacteria in well-controlled drug environments. Nitrofurantoin resistance indeed evolved extremely slowly via reproducible mutations-an almost paradoxical behavior since this drug causes DNA damage and increases the mutation rate. Overall, we identified novel quantitative characteristics of the evolutionary landscape that provide the conceptual foundation for predicting the dynamics of drug resistance evolution.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>26581035</pmid><doi>10.1371/journal.pbio.1002299</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1545-7885
ispartof PLoS biology, 2015-11, Vol.13 (11), p.e1002299-e1002299
issn 1545-7885
1544-9173
1545-7885
language eng
recordid cdi_plos_journals_1749659813
source Publicly Available Content Database; PubMed Central
subjects Algorithms
Anti-Bacterial Agents - pharmacology
Antibiotics
Bacteria
Drug dosages
Drug resistance
Drug Resistance, Bacterial
Drug Resistance, Multiple, Bacterial
E coli
Escherichia coli - drug effects
Escherichia coli - genetics
Escherichia coli - growth & development
Escherichia coli - metabolism
Escherichia coli K12 - drug effects
Escherichia coli K12 - genetics
Escherichia coli K12 - metabolism
Escherichia coli Proteins - genetics
Escherichia coli Proteins - metabolism
Evolution, Molecular
Experiments
Gene Deletion
Genetic Fitness - drug effects
Genomes
Growth rate
Microbial Sensitivity Tests
Models, Genetic
Mutagens - pharmacology
Mutation
Mutation - drug effects
Mutation Rate
Nitrofurantoin - pharmacology
Population genetics
Reproducibility of Results
title Quantifying the Determinants of Evolutionary Dynamics Leading to Drug Resistance
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-09-21T14%3A49%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Quantifying%20the%20Determinants%20of%20Evolutionary%20Dynamics%20Leading%20to%20Drug%20Resistance&rft.jtitle=PLoS%20biology&rft.au=Chevereau,%20Guillaume&rft.date=2015-11-01&rft.volume=13&rft.issue=11&rft.spage=e1002299&rft.epage=e1002299&rft.pages=e1002299-e1002299&rft.issn=1545-7885&rft.eissn=1545-7885&rft_id=info:doi/10.1371/journal.pbio.1002299&rft_dat=%3Cproquest_plos_%3E1735904109%3C/proquest_plos_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c733t-456c9a16fa3d5cb9430110ddaf9e9a36c9bdb7c9178d4610a19be6b2c43810093%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1735904109&rft_id=info:pmid/26581035&rfr_iscdi=true