Loading…

The First Complete Chloroplast Genome Sequences in Actinidiaceae: Genome Structure and Comparative Analysis

Actinidia chinensis is an important economic plant belonging to the basal lineage of the asterids. Availability of a complete Actinidia chloroplast genome sequence is crucial to understanding phylogenetic relationships among major lineages of angiosperms and facilitates kiwifruit genetic improvement...

Full description

Saved in:
Bibliographic Details
Published in:PloS one 2015-06, Vol.10 (6), p.e0129347-e0129347
Main Authors: Yao, Xiaohong, Tang, Ping, Li, Zuozhou, Li, Dawei, Liu, Yifei, Huang, Hongwen
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c692t-bf486d22e5bd1962c3f555126adc6cbf5e627ba12cc1f8994b3bf8ada393887a3
cites cdi_FETCH-LOGICAL-c692t-bf486d22e5bd1962c3f555126adc6cbf5e627ba12cc1f8994b3bf8ada393887a3
container_end_page e0129347
container_issue 6
container_start_page e0129347
container_title PloS one
container_volume 10
creator Yao, Xiaohong
Tang, Ping
Li, Zuozhou
Li, Dawei
Liu, Yifei
Huang, Hongwen
description Actinidia chinensis is an important economic plant belonging to the basal lineage of the asterids. Availability of a complete Actinidia chloroplast genome sequence is crucial to understanding phylogenetic relationships among major lineages of angiosperms and facilitates kiwifruit genetic improvement. We report here the complete nucleotide sequences of the chloroplast genomes for Actinidia chinensis and A. chinensis var deliciosa obtained through de novo assembly of Illumina paired-end reads produced by total DNA sequencing. The total genome size ranges from 155,446 to 157,557 bp, with an inverted repeat (IR) of 24,013 to 24,391 bp, a large single copy region (LSC) of 87,984 to 88,337 bp and a small single copy region (SSC) of 20,332 to 20,336 bp. The genome encodes 113 different genes, including 79 unique protein-coding genes, 30 tRNA genes and 4 ribosomal RNA genes, with 16 duplicated in the inverted repeats, and a tRNA gene (trnfM-CAU) duplicated once in the LSC region. Comparisons of IR boundaries among four asterid species showed that IR/LSC borders were extended into the 5' portion of the psbA gene and IR contraction occurred in Actinidia. The clap gene has been lost from the chloroplast genome in Actinidia, and may have been transferred to the nucleus during chloroplast evolution. Twenty-seven polymorphic simple sequence repeat (SSR) loci were identified in the Actinidia chloroplast genome. Maximum parsimony analyses of a 72-gene, 16 taxa angiosperm dataset strongly support the placement of Actinidiaceae in Ericales within the basal asterids.
doi_str_mv 10.1371/journal.pone.0129347
format article
fullrecord <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_1686215130</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A416664996</galeid><doaj_id>oai_doaj_org_article_bcf42fef676d44ccbddff3ebf3a2a41f</doaj_id><sourcerecordid>A416664996</sourcerecordid><originalsourceid>FETCH-LOGICAL-c692t-bf486d22e5bd1962c3f555126adc6cbf5e627ba12cc1f8994b3bf8ada393887a3</originalsourceid><addsrcrecordid>eNqNk11v0zAUhiMEYmPwDxBEQkJw0RJ_xEm4QKoqNipNmsQGt5ZjH7cuqV1sZ2L_HnfNqgbtAvnC1vFz3vNhnyx7jYopIhX6tHa9t6Kbbp2FaYFwQ2j1JDtFDcEThgvy9Oh8kr0IYV0UJakZe56dYFZQxgg6zX7drCA_Nz7EfO422w4i5PNV57zbdiIZL8C6DeTX8LsHKyHkxuYzGY01yggJAj4fkOh7GXsPubDqXkx4Ec0t5LOU5l0w4WX2TIsuwKthP8t-nH-9mX-bXF5dLOazy4lkDY6TVtOaKYyhbBVqGJZEl2WJMBNKMtnqEhiuWoGwlEjXTUNb0upaKEEaUteVIGfZ273utnOBD30KHLGaYVQiUiRisSeUE2u-9WYj_B13wvB7g_NLLnw0sgPeSk2xBs0qpiiVslVKawKtJgILinTS-jJE69sNKAk2etGNRMc31qz40t1ySsuK1SgJfBgEvEtdDpFvTJDQdcKC6_d5N01T4V3e7_5BH69uoJYiFWCsdimu3InyGUWMMdo0LFHTR6i0FGyMTJ9Km2QfOXwcOSQmwp-4FH0IfHH9_f_Zq59j9v0RuwLRxVVwXR-Ns2EM0j0ovQvBgz40GRV8NxMP3eC7meDDTCS3N8cPdHB6GALyF3EACRo</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1686215130</pqid></control><display><type>article</type><title>The First Complete Chloroplast Genome Sequences in Actinidiaceae: Genome Structure and Comparative Analysis</title><source>Publicly Available Content Database</source><source>PubMed Central</source><creator>Yao, Xiaohong ; Tang, Ping ; Li, Zuozhou ; Li, Dawei ; Liu, Yifei ; Huang, Hongwen</creator><contributor>Chen, Zhong-Hua</contributor><creatorcontrib>Yao, Xiaohong ; Tang, Ping ; Li, Zuozhou ; Li, Dawei ; Liu, Yifei ; Huang, Hongwen ; Chen, Zhong-Hua</creatorcontrib><description>Actinidia chinensis is an important economic plant belonging to the basal lineage of the asterids. Availability of a complete Actinidia chloroplast genome sequence is crucial to understanding phylogenetic relationships among major lineages of angiosperms and facilitates kiwifruit genetic improvement. We report here the complete nucleotide sequences of the chloroplast genomes for Actinidia chinensis and A. chinensis var deliciosa obtained through de novo assembly of Illumina paired-end reads produced by total DNA sequencing. The total genome size ranges from 155,446 to 157,557 bp, with an inverted repeat (IR) of 24,013 to 24,391 bp, a large single copy region (LSC) of 87,984 to 88,337 bp and a small single copy region (SSC) of 20,332 to 20,336 bp. The genome encodes 113 different genes, including 79 unique protein-coding genes, 30 tRNA genes and 4 ribosomal RNA genes, with 16 duplicated in the inverted repeats, and a tRNA gene (trnfM-CAU) duplicated once in the LSC region. Comparisons of IR boundaries among four asterid species showed that IR/LSC borders were extended into the 5' portion of the psbA gene and IR contraction occurred in Actinidia. The clap gene has been lost from the chloroplast genome in Actinidia, and may have been transferred to the nucleus during chloroplast evolution. Twenty-seven polymorphic simple sequence repeat (SSR) loci were identified in the Actinidia chloroplast genome. Maximum parsimony analyses of a 72-gene, 16 taxa angiosperm dataset strongly support the placement of Actinidiaceae in Ericales within the basal asterids.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0129347</identifier><identifier>PMID: 26046631</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Actinidia ; Actinidia - genetics ; Actinidia chinensis ; Actinidiaceae ; Actinidiaceae - classification ; Actinidiaceae - genetics ; Analysis ; Angiosperms ; Botanical gardens ; Camellia sinensis ; Chloroplast Proteins - classification ; Chloroplast Proteins - genetics ; Chloroplasts ; Comparative analysis ; Contraction ; Deoxyribonucleic acid ; DNA ; DNA sequencing ; DNA, Chloroplast - chemistry ; DNA, Chloroplast - genetics ; Economic analysis ; Economic planning ; Evolution ; Flowers &amp; plants ; Gene duplication ; Gene sequencing ; Genes ; Genes, Chloroplast - genetics ; Genetic engineering ; Genetic improvement ; Genome, Chloroplast - genetics ; Genome, Plant - genetics ; Genomes ; Genomics ; Germplasm ; Inverted repeat ; Kiwifruit ; Laboratories ; Molecular Sequence Data ; Mutation ; Nuclei ; Nucleotide sequence ; Phylogenetics ; Phylogeny ; PsbA gene ; Repetitive Sequences, Nucleic Acid - genetics ; Reproduction (copying) ; Ribonucleic acid ; RNA ; rRNA ; Sequence Analysis, DNA ; Transfer RNA ; tRNA</subject><ispartof>PloS one, 2015-06, Vol.10 (6), p.e0129347-e0129347</ispartof><rights>COPYRIGHT 2015 Public Library of Science</rights><rights>2015 Yao et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2015 Yao et al 2015 Yao et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c692t-bf486d22e5bd1962c3f555126adc6cbf5e627ba12cc1f8994b3bf8ada393887a3</citedby><cites>FETCH-LOGICAL-c692t-bf486d22e5bd1962c3f555126adc6cbf5e627ba12cc1f8994b3bf8ada393887a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/1686215130/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/1686215130?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,315,730,783,787,888,25765,27936,27937,37024,37025,44602,53804,53806,75454</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26046631$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Chen, Zhong-Hua</contributor><creatorcontrib>Yao, Xiaohong</creatorcontrib><creatorcontrib>Tang, Ping</creatorcontrib><creatorcontrib>Li, Zuozhou</creatorcontrib><creatorcontrib>Li, Dawei</creatorcontrib><creatorcontrib>Liu, Yifei</creatorcontrib><creatorcontrib>Huang, Hongwen</creatorcontrib><title>The First Complete Chloroplast Genome Sequences in Actinidiaceae: Genome Structure and Comparative Analysis</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>Actinidia chinensis is an important economic plant belonging to the basal lineage of the asterids. Availability of a complete Actinidia chloroplast genome sequence is crucial to understanding phylogenetic relationships among major lineages of angiosperms and facilitates kiwifruit genetic improvement. We report here the complete nucleotide sequences of the chloroplast genomes for Actinidia chinensis and A. chinensis var deliciosa obtained through de novo assembly of Illumina paired-end reads produced by total DNA sequencing. The total genome size ranges from 155,446 to 157,557 bp, with an inverted repeat (IR) of 24,013 to 24,391 bp, a large single copy region (LSC) of 87,984 to 88,337 bp and a small single copy region (SSC) of 20,332 to 20,336 bp. The genome encodes 113 different genes, including 79 unique protein-coding genes, 30 tRNA genes and 4 ribosomal RNA genes, with 16 duplicated in the inverted repeats, and a tRNA gene (trnfM-CAU) duplicated once in the LSC region. Comparisons of IR boundaries among four asterid species showed that IR/LSC borders were extended into the 5' portion of the psbA gene and IR contraction occurred in Actinidia. The clap gene has been lost from the chloroplast genome in Actinidia, and may have been transferred to the nucleus during chloroplast evolution. Twenty-seven polymorphic simple sequence repeat (SSR) loci were identified in the Actinidia chloroplast genome. Maximum parsimony analyses of a 72-gene, 16 taxa angiosperm dataset strongly support the placement of Actinidiaceae in Ericales within the basal asterids.</description><subject>Actinidia</subject><subject>Actinidia - genetics</subject><subject>Actinidia chinensis</subject><subject>Actinidiaceae</subject><subject>Actinidiaceae - classification</subject><subject>Actinidiaceae - genetics</subject><subject>Analysis</subject><subject>Angiosperms</subject><subject>Botanical gardens</subject><subject>Camellia sinensis</subject><subject>Chloroplast Proteins - classification</subject><subject>Chloroplast Proteins - genetics</subject><subject>Chloroplasts</subject><subject>Comparative analysis</subject><subject>Contraction</subject><subject>Deoxyribonucleic acid</subject><subject>DNA</subject><subject>DNA sequencing</subject><subject>DNA, Chloroplast - chemistry</subject><subject>DNA, Chloroplast - genetics</subject><subject>Economic analysis</subject><subject>Economic planning</subject><subject>Evolution</subject><subject>Flowers &amp; plants</subject><subject>Gene duplication</subject><subject>Gene sequencing</subject><subject>Genes</subject><subject>Genes, Chloroplast - genetics</subject><subject>Genetic engineering</subject><subject>Genetic improvement</subject><subject>Genome, Chloroplast - genetics</subject><subject>Genome, Plant - genetics</subject><subject>Genomes</subject><subject>Genomics</subject><subject>Germplasm</subject><subject>Inverted repeat</subject><subject>Kiwifruit</subject><subject>Laboratories</subject><subject>Molecular Sequence Data</subject><subject>Mutation</subject><subject>Nuclei</subject><subject>Nucleotide sequence</subject><subject>Phylogenetics</subject><subject>Phylogeny</subject><subject>PsbA gene</subject><subject>Repetitive Sequences, Nucleic Acid - genetics</subject><subject>Reproduction (copying)</subject><subject>Ribonucleic acid</subject><subject>RNA</subject><subject>rRNA</subject><subject>Sequence Analysis, DNA</subject><subject>Transfer RNA</subject><subject>tRNA</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNqNk11v0zAUhiMEYmPwDxBEQkJw0RJ_xEm4QKoqNipNmsQGt5ZjH7cuqV1sZ2L_HnfNqgbtAvnC1vFz3vNhnyx7jYopIhX6tHa9t6Kbbp2FaYFwQ2j1JDtFDcEThgvy9Oh8kr0IYV0UJakZe56dYFZQxgg6zX7drCA_Nz7EfO422w4i5PNV57zbdiIZL8C6DeTX8LsHKyHkxuYzGY01yggJAj4fkOh7GXsPubDqXkx4Ec0t5LOU5l0w4WX2TIsuwKthP8t-nH-9mX-bXF5dLOazy4lkDY6TVtOaKYyhbBVqGJZEl2WJMBNKMtnqEhiuWoGwlEjXTUNb0upaKEEaUteVIGfZ273utnOBD30KHLGaYVQiUiRisSeUE2u-9WYj_B13wvB7g_NLLnw0sgPeSk2xBs0qpiiVslVKawKtJgILinTS-jJE69sNKAk2etGNRMc31qz40t1ySsuK1SgJfBgEvEtdDpFvTJDQdcKC6_d5N01T4V3e7_5BH69uoJYiFWCsdimu3InyGUWMMdo0LFHTR6i0FGyMTJ9Km2QfOXwcOSQmwp-4FH0IfHH9_f_Zq59j9v0RuwLRxVVwXR-Ns2EM0j0ovQvBgz40GRV8NxMP3eC7meDDTCS3N8cPdHB6GALyF3EACRo</recordid><startdate>20150605</startdate><enddate>20150605</enddate><creator>Yao, Xiaohong</creator><creator>Tang, Ping</creator><creator>Li, Zuozhou</creator><creator>Li, Dawei</creator><creator>Liu, Yifei</creator><creator>Huang, Hongwen</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20150605</creationdate><title>The First Complete Chloroplast Genome Sequences in Actinidiaceae: Genome Structure and Comparative Analysis</title><author>Yao, Xiaohong ; Tang, Ping ; Li, Zuozhou ; Li, Dawei ; Liu, Yifei ; Huang, Hongwen</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c692t-bf486d22e5bd1962c3f555126adc6cbf5e627ba12cc1f8994b3bf8ada393887a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Actinidia</topic><topic>Actinidia - genetics</topic><topic>Actinidia chinensis</topic><topic>Actinidiaceae</topic><topic>Actinidiaceae - classification</topic><topic>Actinidiaceae - genetics</topic><topic>Analysis</topic><topic>Angiosperms</topic><topic>Botanical gardens</topic><topic>Camellia sinensis</topic><topic>Chloroplast Proteins - classification</topic><topic>Chloroplast Proteins - genetics</topic><topic>Chloroplasts</topic><topic>Comparative analysis</topic><topic>Contraction</topic><topic>Deoxyribonucleic acid</topic><topic>DNA</topic><topic>DNA sequencing</topic><topic>DNA, Chloroplast - chemistry</topic><topic>DNA, Chloroplast - genetics</topic><topic>Economic analysis</topic><topic>Economic planning</topic><topic>Evolution</topic><topic>Flowers &amp; plants</topic><topic>Gene duplication</topic><topic>Gene sequencing</topic><topic>Genes</topic><topic>Genes, Chloroplast - genetics</topic><topic>Genetic engineering</topic><topic>Genetic improvement</topic><topic>Genome, Chloroplast - genetics</topic><topic>Genome, Plant - genetics</topic><topic>Genomes</topic><topic>Genomics</topic><topic>Germplasm</topic><topic>Inverted repeat</topic><topic>Kiwifruit</topic><topic>Laboratories</topic><topic>Molecular Sequence Data</topic><topic>Mutation</topic><topic>Nuclei</topic><topic>Nucleotide sequence</topic><topic>Phylogenetics</topic><topic>Phylogeny</topic><topic>PsbA gene</topic><topic>Repetitive Sequences, Nucleic Acid - genetics</topic><topic>Reproduction (copying)</topic><topic>Ribonucleic acid</topic><topic>RNA</topic><topic>rRNA</topic><topic>Sequence Analysis, DNA</topic><topic>Transfer RNA</topic><topic>tRNA</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yao, Xiaohong</creatorcontrib><creatorcontrib>Tang, Ping</creatorcontrib><creatorcontrib>Li, Zuozhou</creatorcontrib><creatorcontrib>Li, Dawei</creatorcontrib><creatorcontrib>Liu, Yifei</creatorcontrib><creatorcontrib>Huang, Hongwen</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Opposing Viewpoints Resource Center</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Proquest Nursing &amp; Allied Health Source</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>ProQuest_Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>ProQuest Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>Biological Sciences</collection><collection>Agriculture Science Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>Directory of Open Access Journals(OpenAccess)</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yao, Xiaohong</au><au>Tang, Ping</au><au>Li, Zuozhou</au><au>Li, Dawei</au><au>Liu, Yifei</au><au>Huang, Hongwen</au><au>Chen, Zhong-Hua</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The First Complete Chloroplast Genome Sequences in Actinidiaceae: Genome Structure and Comparative Analysis</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2015-06-05</date><risdate>2015</risdate><volume>10</volume><issue>6</issue><spage>e0129347</spage><epage>e0129347</epage><pages>e0129347-e0129347</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>Actinidia chinensis is an important economic plant belonging to the basal lineage of the asterids. Availability of a complete Actinidia chloroplast genome sequence is crucial to understanding phylogenetic relationships among major lineages of angiosperms and facilitates kiwifruit genetic improvement. We report here the complete nucleotide sequences of the chloroplast genomes for Actinidia chinensis and A. chinensis var deliciosa obtained through de novo assembly of Illumina paired-end reads produced by total DNA sequencing. The total genome size ranges from 155,446 to 157,557 bp, with an inverted repeat (IR) of 24,013 to 24,391 bp, a large single copy region (LSC) of 87,984 to 88,337 bp and a small single copy region (SSC) of 20,332 to 20,336 bp. The genome encodes 113 different genes, including 79 unique protein-coding genes, 30 tRNA genes and 4 ribosomal RNA genes, with 16 duplicated in the inverted repeats, and a tRNA gene (trnfM-CAU) duplicated once in the LSC region. Comparisons of IR boundaries among four asterid species showed that IR/LSC borders were extended into the 5' portion of the psbA gene and IR contraction occurred in Actinidia. The clap gene has been lost from the chloroplast genome in Actinidia, and may have been transferred to the nucleus during chloroplast evolution. Twenty-seven polymorphic simple sequence repeat (SSR) loci were identified in the Actinidia chloroplast genome. Maximum parsimony analyses of a 72-gene, 16 taxa angiosperm dataset strongly support the placement of Actinidiaceae in Ericales within the basal asterids.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>26046631</pmid><doi>10.1371/journal.pone.0129347</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1932-6203
ispartof PloS one, 2015-06, Vol.10 (6), p.e0129347-e0129347
issn 1932-6203
1932-6203
language eng
recordid cdi_plos_journals_1686215130
source Publicly Available Content Database; PubMed Central
subjects Actinidia
Actinidia - genetics
Actinidia chinensis
Actinidiaceae
Actinidiaceae - classification
Actinidiaceae - genetics
Analysis
Angiosperms
Botanical gardens
Camellia sinensis
Chloroplast Proteins - classification
Chloroplast Proteins - genetics
Chloroplasts
Comparative analysis
Contraction
Deoxyribonucleic acid
DNA
DNA sequencing
DNA, Chloroplast - chemistry
DNA, Chloroplast - genetics
Economic analysis
Economic planning
Evolution
Flowers & plants
Gene duplication
Gene sequencing
Genes
Genes, Chloroplast - genetics
Genetic engineering
Genetic improvement
Genome, Chloroplast - genetics
Genome, Plant - genetics
Genomes
Genomics
Germplasm
Inverted repeat
Kiwifruit
Laboratories
Molecular Sequence Data
Mutation
Nuclei
Nucleotide sequence
Phylogenetics
Phylogeny
PsbA gene
Repetitive Sequences, Nucleic Acid - genetics
Reproduction (copying)
Ribonucleic acid
RNA
rRNA
Sequence Analysis, DNA
Transfer RNA
tRNA
title The First Complete Chloroplast Genome Sequences in Actinidiaceae: Genome Structure and Comparative Analysis
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-11-15T14%3A33%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20First%20Complete%20Chloroplast%20Genome%20Sequences%20in%20Actinidiaceae:%20Genome%20Structure%20and%20Comparative%20Analysis&rft.jtitle=PloS%20one&rft.au=Yao,%20Xiaohong&rft.date=2015-06-05&rft.volume=10&rft.issue=6&rft.spage=e0129347&rft.epage=e0129347&rft.pages=e0129347-e0129347&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0129347&rft_dat=%3Cgale_plos_%3EA416664996%3C/gale_plos_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c692t-bf486d22e5bd1962c3f555126adc6cbf5e627ba12cc1f8994b3bf8ada393887a3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1686215130&rft_id=info:pmid/26046631&rft_galeid=A416664996&rfr_iscdi=true