Loading…

CO2 Splitting via Two-Step Solar Thermochemical Cycles with Zn/ZnO and FeO/Fe3O4 Redox Reactions: Thermodynamic Analysis

Two-step thermochemical cycles for CO2 reduction via Zn/ZnO and FeO/Fe3O4 redox reactions are considered. The first, endothermic step is the thermal dissociation of the metal oxide into the metal or a reduced valence metal oxide and O2 using concentrated solar energy as the source of high-temperatur...

Full description

Saved in:
Bibliographic Details
Published in:Energy & fuels 2008-09, Vol.22 (5), p.3544-3550
Main Authors: Gálvez, M. E, Loutzenhiser, P. G, Hischier, I, Steinfeld, A
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 3550
container_issue 5
container_start_page 3544
container_title Energy & fuels
container_volume 22
creator Gálvez, M. E
Loutzenhiser, P. G
Hischier, I
Steinfeld, A
description Two-step thermochemical cycles for CO2 reduction via Zn/ZnO and FeO/Fe3O4 redox reactions are considered. The first, endothermic step is the thermal dissociation of the metal oxide into the metal or a reduced valence metal oxide and O2 using concentrated solar energy as the source of high-temperature process heat. The second, nonsolar, exothermic step is the reaction of the reduced metal/metal oxide with CO2, yielding CO and/or C, together with the initial form of the metal oxide that is recycled to the first step. Chemical equilibrium compositions of the pertinent reactions are computed as a function of temperature and pressure. A second-law thermodynamic analysis for the net reaction of CO2 = CO + 0.5O2 indicates a maximal solar−chemical energy conversion efficiency of 39 and 29% for the Zn/ZnO and FeO/Fe3O4 cycle, respectively. Efficiencies are lower for both cycles yielding C. Major sources of irreversibility are associated with the re-radiation losses of the solar reactor operating at 2000 K and the quenching of its products to avoid recombination.
doi_str_mv 10.1021/ef800230b
format article
fullrecord <record><control><sourceid>istex_pasca</sourceid><recordid>TN_cdi_pascalfrancis_primary_20686059</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>ark_67375_TPS_4GR2M1WT_N</sourcerecordid><originalsourceid>FETCH-LOGICAL-a253t-f7a57049ed88f447347e5adb624b758095a470a6c0912eb76c5a555876fcccf23</originalsourceid><addsrcrecordid>eNpFkUFPwkAUhDdGExE9-A_24rHyuu12t94IETRBa6DGhMvmsd3KYmlJtwr999ZA8DLvMJMvbzKE3Ppw7wPzByaXACyA5Rnp-ZyBx4HF56QHUgoPIhZekivn1gAQBZL3yH6UMDrfFrZpbPlJfyzSdFd588Zs6bwqsKbpytSbSq_Mxmos6KjVhXF0Z5sVXZSDRZlQLDM6NslgbIIkpDOTVftOUTe2Kt3DEZC1JXYEOiyxaJ111-Qix8KZm-Ptk_fxYzp68qbJ5Hk0nHrIeNB4uUAuIIxNJmUehiIIheGYLbsmS8ElxBxDARhpiH1mliLSHDnnUkS51jpnQZ_cHbhbdN3_eY2ltk5ta7vBulUMIhkBj7ucd8hZ15j9ycf6S0UiEFylb3MVTmbsxf9I1es_F7VT6-q77no55YP6m0GdZgh-ARKNeFI</addsrcrecordid><sourcetype>Index Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>CO2 Splitting via Two-Step Solar Thermochemical Cycles with Zn/ZnO and FeO/Fe3O4 Redox Reactions: Thermodynamic Analysis</title><source>American Chemical Society:Jisc Collections:American Chemical Society Read &amp; Publish Agreement 2022-2024 (Reading list)</source><creator>Gálvez, M. E ; Loutzenhiser, P. G ; Hischier, I ; Steinfeld, A</creator><creatorcontrib>Gálvez, M. E ; Loutzenhiser, P. G ; Hischier, I ; Steinfeld, A</creatorcontrib><description>Two-step thermochemical cycles for CO2 reduction via Zn/ZnO and FeO/Fe3O4 redox reactions are considered. The first, endothermic step is the thermal dissociation of the metal oxide into the metal or a reduced valence metal oxide and O2 using concentrated solar energy as the source of high-temperature process heat. The second, nonsolar, exothermic step is the reaction of the reduced metal/metal oxide with CO2, yielding CO and/or C, together with the initial form of the metal oxide that is recycled to the first step. Chemical equilibrium compositions of the pertinent reactions are computed as a function of temperature and pressure. A second-law thermodynamic analysis for the net reaction of CO2 = CO + 0.5O2 indicates a maximal solar−chemical energy conversion efficiency of 39 and 29% for the Zn/ZnO and FeO/Fe3O4 cycle, respectively. Efficiencies are lower for both cycles yielding C. Major sources of irreversibility are associated with the re-radiation losses of the solar reactor operating at 2000 K and the quenching of its products to avoid recombination.</description><identifier>ISSN: 0887-0624</identifier><identifier>EISSN: 1520-5029</identifier><identifier>DOI: 10.1021/ef800230b</identifier><identifier>CODEN: ENFUEM</identifier><language>eng</language><publisher>Washington, DC: American Chemical Society</publisher><subject>Air pollution caused by fuel industries ; Applied sciences ; Energy ; Energy. Thermal use of fuels ; Exact sciences and technology ; Pollution reduction ; Renewable Energy</subject><ispartof>Energy &amp; fuels, 2008-09, Vol.22 (5), p.3544-3550</ispartof><rights>Copyright © 2008 American Chemical Society</rights><rights>2009 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>315,786,790,27957,27958</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=20686059$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Gálvez, M. E</creatorcontrib><creatorcontrib>Loutzenhiser, P. G</creatorcontrib><creatorcontrib>Hischier, I</creatorcontrib><creatorcontrib>Steinfeld, A</creatorcontrib><title>CO2 Splitting via Two-Step Solar Thermochemical Cycles with Zn/ZnO and FeO/Fe3O4 Redox Reactions: Thermodynamic Analysis</title><title>Energy &amp; fuels</title><addtitle>Energy Fuels</addtitle><description>Two-step thermochemical cycles for CO2 reduction via Zn/ZnO and FeO/Fe3O4 redox reactions are considered. The first, endothermic step is the thermal dissociation of the metal oxide into the metal or a reduced valence metal oxide and O2 using concentrated solar energy as the source of high-temperature process heat. The second, nonsolar, exothermic step is the reaction of the reduced metal/metal oxide with CO2, yielding CO and/or C, together with the initial form of the metal oxide that is recycled to the first step. Chemical equilibrium compositions of the pertinent reactions are computed as a function of temperature and pressure. A second-law thermodynamic analysis for the net reaction of CO2 = CO + 0.5O2 indicates a maximal solar−chemical energy conversion efficiency of 39 and 29% for the Zn/ZnO and FeO/Fe3O4 cycle, respectively. Efficiencies are lower for both cycles yielding C. Major sources of irreversibility are associated with the re-radiation losses of the solar reactor operating at 2000 K and the quenching of its products to avoid recombination.</description><subject>Air pollution caused by fuel industries</subject><subject>Applied sciences</subject><subject>Energy</subject><subject>Energy. Thermal use of fuels</subject><subject>Exact sciences and technology</subject><subject>Pollution reduction</subject><subject>Renewable Energy</subject><issn>0887-0624</issn><issn>1520-5029</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><recordid>eNpFkUFPwkAUhDdGExE9-A_24rHyuu12t94IETRBa6DGhMvmsd3KYmlJtwr999ZA8DLvMJMvbzKE3Ppw7wPzByaXACyA5Rnp-ZyBx4HF56QHUgoPIhZekivn1gAQBZL3yH6UMDrfFrZpbPlJfyzSdFd588Zs6bwqsKbpytSbSq_Mxmos6KjVhXF0Z5sVXZSDRZlQLDM6NslgbIIkpDOTVftOUTe2Kt3DEZC1JXYEOiyxaJ111-Qix8KZm-Ptk_fxYzp68qbJ5Hk0nHrIeNB4uUAuIIxNJmUehiIIheGYLbsmS8ElxBxDARhpiH1mliLSHDnnUkS51jpnQZ_cHbhbdN3_eY2ltk5ta7vBulUMIhkBj7ucd8hZ15j9ycf6S0UiEFylb3MVTmbsxf9I1es_F7VT6-q77no55YP6m0GdZgh-ARKNeFI</recordid><startdate>20080917</startdate><enddate>20080917</enddate><creator>Gálvez, M. E</creator><creator>Loutzenhiser, P. G</creator><creator>Hischier, I</creator><creator>Steinfeld, A</creator><general>American Chemical Society</general><scope>BSCLL</scope><scope>IQODW</scope></search><sort><creationdate>20080917</creationdate><title>CO2 Splitting via Two-Step Solar Thermochemical Cycles with Zn/ZnO and FeO/Fe3O4 Redox Reactions: Thermodynamic Analysis</title><author>Gálvez, M. E ; Loutzenhiser, P. G ; Hischier, I ; Steinfeld, A</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a253t-f7a57049ed88f447347e5adb624b758095a470a6c0912eb76c5a555876fcccf23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Air pollution caused by fuel industries</topic><topic>Applied sciences</topic><topic>Energy</topic><topic>Energy. Thermal use of fuels</topic><topic>Exact sciences and technology</topic><topic>Pollution reduction</topic><topic>Renewable Energy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gálvez, M. E</creatorcontrib><creatorcontrib>Loutzenhiser, P. G</creatorcontrib><creatorcontrib>Hischier, I</creatorcontrib><creatorcontrib>Steinfeld, A</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><jtitle>Energy &amp; fuels</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gálvez, M. E</au><au>Loutzenhiser, P. G</au><au>Hischier, I</au><au>Steinfeld, A</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>CO2 Splitting via Two-Step Solar Thermochemical Cycles with Zn/ZnO and FeO/Fe3O4 Redox Reactions: Thermodynamic Analysis</atitle><jtitle>Energy &amp; fuels</jtitle><addtitle>Energy Fuels</addtitle><date>2008-09-17</date><risdate>2008</risdate><volume>22</volume><issue>5</issue><spage>3544</spage><epage>3550</epage><pages>3544-3550</pages><issn>0887-0624</issn><eissn>1520-5029</eissn><coden>ENFUEM</coden><notes>istex:E5FD21704687484EFC5BF02A3F7EB6D02D85775D</notes><notes>ark:/67375/TPS-4GR2M1WT-N</notes><abstract>Two-step thermochemical cycles for CO2 reduction via Zn/ZnO and FeO/Fe3O4 redox reactions are considered. The first, endothermic step is the thermal dissociation of the metal oxide into the metal or a reduced valence metal oxide and O2 using concentrated solar energy as the source of high-temperature process heat. The second, nonsolar, exothermic step is the reaction of the reduced metal/metal oxide with CO2, yielding CO and/or C, together with the initial form of the metal oxide that is recycled to the first step. Chemical equilibrium compositions of the pertinent reactions are computed as a function of temperature and pressure. A second-law thermodynamic analysis for the net reaction of CO2 = CO + 0.5O2 indicates a maximal solar−chemical energy conversion efficiency of 39 and 29% for the Zn/ZnO and FeO/Fe3O4 cycle, respectively. Efficiencies are lower for both cycles yielding C. Major sources of irreversibility are associated with the re-radiation losses of the solar reactor operating at 2000 K and the quenching of its products to avoid recombination.</abstract><cop>Washington, DC</cop><pub>American Chemical Society</pub><doi>10.1021/ef800230b</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0887-0624
ispartof Energy & fuels, 2008-09, Vol.22 (5), p.3544-3550
issn 0887-0624
1520-5029
language eng
recordid cdi_pascalfrancis_primary_20686059
source American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list)
subjects Air pollution caused by fuel industries
Applied sciences
Energy
Energy. Thermal use of fuels
Exact sciences and technology
Pollution reduction
Renewable Energy
title CO2 Splitting via Two-Step Solar Thermochemical Cycles with Zn/ZnO and FeO/Fe3O4 Redox Reactions: Thermodynamic Analysis
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-09-22T22%3A22%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-istex_pasca&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=CO2%20Splitting%20via%20Two-Step%20Solar%20Thermochemical%20Cycles%20with%20Zn/ZnO%20and%20FeO/Fe3O4%20Redox%20Reactions:%20Thermodynamic%20Analysis&rft.jtitle=Energy%20&%20fuels&rft.au=Ga%CC%81lvez,%20M.%20E&rft.date=2008-09-17&rft.volume=22&rft.issue=5&rft.spage=3544&rft.epage=3550&rft.pages=3544-3550&rft.issn=0887-0624&rft.eissn=1520-5029&rft.coden=ENFUEM&rft_id=info:doi/10.1021/ef800230b&rft_dat=%3Cistex_pasca%3Eark_67375_TPS_4GR2M1WT_N%3C/istex_pasca%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a253t-f7a57049ed88f447347e5adb624b758095a470a6c0912eb76c5a555876fcccf23%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true