Loading…

Ballistic transport and electrostatics in metallic carbon nanotubes

We calculate the current and electrostatic potential drop in metallic carbon nanotube wires self-consistently by solving the Green's function and electrostatics equations in the ballistic case. About one-tenth of the applied voltage drops across the bulk of a nanowire, independent of the length...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on nanotechnology 2005-09, Vol.4 (5), p.557-562
Main Authors: Svizhenko, A., Anantram, M.P., Govindan, T.R.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c385t-f546d038c4bb97470973d2d398c64a3510b0297803a10dedb082b735134c413c3
cites cdi_FETCH-LOGICAL-c385t-f546d038c4bb97470973d2d398c64a3510b0297803a10dedb082b735134c413c3
container_end_page 562
container_issue 5
container_start_page 557
container_title IEEE transactions on nanotechnology
container_volume 4
creator Svizhenko, A.
Anantram, M.P.
Govindan, T.R.
description We calculate the current and electrostatic potential drop in metallic carbon nanotube wires self-consistently by solving the Green's function and electrostatics equations in the ballistic case. About one-tenth of the applied voltage drops across the bulk of a nanowire, independent of the lengths considered here. The remaining nine-tenths of the bias drops near the contacts, thereby creating a nonlinear potential drop. The scaling of the electric field at the center of the nanotube with length (L) is faster than 1/L (roughly 1/L/sup 1.25-1.75/). At room temperature, the low bias conductance of larger-diameter nanotubes is larger than 4e/sup 2//h due to occupation of noncrossing subbands. The physics of conductance evolution with bias due to Zener tunneling in noncrossing subbands is discussed.
doi_str_mv 10.1109/TNANO.2005.851409
format article
fullrecord <record><control><sourceid>proquest_pasca</sourceid><recordid>TN_cdi_pascalfrancis_primary_17111389</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>1504713</ieee_id><sourcerecordid>27984179</sourcerecordid><originalsourceid>FETCH-LOGICAL-c385t-f546d038c4bb97470973d2d398c64a3510b0297803a10dedb082b735134c413c3</originalsourceid><addsrcrecordid>eNp9kE1LAzEQhhdRsFZ_gHhZBPW0dWaTbJJjLX5BaS8VvIVsNoUt292apAf_vVm3UPDgaYaZZ16YJ0muESaIIB9Xi-liOckB2EQwpCBPkhFKihmAYKexZ6TIMGef58mF9xsA5AUTo2T2pJum9qE2aXC69bvOhVS3VWoba4LrfNBx59O6Tbc29KxJjXZl16atbruwL62_TM7WuvH26lDHycfL82r2ls2Xr--z6TwzRLCQrRktKiDC0LKUnHKQnFR5RaQwBdWEIZSQSy6AaITKViWIvORxTqihSAwZJw9D7s51X3vrg9rW3tim0a3t9l4JWaCQVOaRvP-XzLkUFLmM4O0fcNPtXRu_UBJz4BIRI4QDZKIP7-xa7Vy91e5bIajevvq1r3r7arAfb-4Owdob3ayjW1P74yHvg0XP3Qxcba09rhlQjoT8APNYi_k</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>912079111</pqid></control><display><type>article</type><title>Ballistic transport and electrostatics in metallic carbon nanotubes</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Svizhenko, A. ; Anantram, M.P. ; Govindan, T.R.</creator><creatorcontrib>Svizhenko, A. ; Anantram, M.P. ; Govindan, T.R.</creatorcontrib><description>We calculate the current and electrostatic potential drop in metallic carbon nanotube wires self-consistently by solving the Green's function and electrostatics equations in the ballistic case. About one-tenth of the applied voltage drops across the bulk of a nanowire, independent of the lengths considered here. The remaining nine-tenths of the bias drops near the contacts, thereby creating a nonlinear potential drop. The scaling of the electric field at the center of the nanotube with length (L) is faster than 1/L (roughly 1/L/sup 1.25-1.75/). At room temperature, the low bias conductance of larger-diameter nanotubes is larger than 4e/sup 2//h due to occupation of noncrossing subbands. The physics of conductance evolution with bias due to Zener tunneling in noncrossing subbands is discussed.</description><identifier>ISSN: 1536-125X</identifier><identifier>EISSN: 1941-0085</identifier><identifier>DOI: 10.1109/TNANO.2005.851409</identifier><identifier>CODEN: ITNECU</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Ballistic transport ; Bias ; Carbon nanotubes ; Condensed matter: electronic structure, electrical, magnetic, and optical properties ; Conductance ; Electronic structure and electrical properties of surfaces, interfaces, thin films and low-dimensional structures ; Electronic transport in multilayers, nanoscale materials and structures ; Electrostatics ; Exact sciences and technology ; Green's function methods ; inter-connects ; Mathematical analysis ; modeling ; Nanocomposites ; Nanomaterials ; Nanostructure ; Nanotubes ; nanowires ; Nonlinear equations ; Physics ; Temperature ; Tunneling ; Voltage ; Wires</subject><ispartof>IEEE transactions on nanotechnology, 2005-09, Vol.4 (5), p.557-562</ispartof><rights>2005 INIST-CNRS</rights><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2005</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c385t-f546d038c4bb97470973d2d398c64a3510b0297803a10dedb082b735134c413c3</citedby><cites>FETCH-LOGICAL-c385t-f546d038c4bb97470973d2d398c64a3510b0297803a10dedb082b735134c413c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/1504713$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>315,783,787,27938,27939,55126</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=17111389$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Svizhenko, A.</creatorcontrib><creatorcontrib>Anantram, M.P.</creatorcontrib><creatorcontrib>Govindan, T.R.</creatorcontrib><title>Ballistic transport and electrostatics in metallic carbon nanotubes</title><title>IEEE transactions on nanotechnology</title><addtitle>TNANO</addtitle><description>We calculate the current and electrostatic potential drop in metallic carbon nanotube wires self-consistently by solving the Green's function and electrostatics equations in the ballistic case. About one-tenth of the applied voltage drops across the bulk of a nanowire, independent of the lengths considered here. The remaining nine-tenths of the bias drops near the contacts, thereby creating a nonlinear potential drop. The scaling of the electric field at the center of the nanotube with length (L) is faster than 1/L (roughly 1/L/sup 1.25-1.75/). At room temperature, the low bias conductance of larger-diameter nanotubes is larger than 4e/sup 2//h due to occupation of noncrossing subbands. The physics of conductance evolution with bias due to Zener tunneling in noncrossing subbands is discussed.</description><subject>Ballistic transport</subject><subject>Bias</subject><subject>Carbon nanotubes</subject><subject>Condensed matter: electronic structure, electrical, magnetic, and optical properties</subject><subject>Conductance</subject><subject>Electronic structure and electrical properties of surfaces, interfaces, thin films and low-dimensional structures</subject><subject>Electronic transport in multilayers, nanoscale materials and structures</subject><subject>Electrostatics</subject><subject>Exact sciences and technology</subject><subject>Green's function methods</subject><subject>inter-connects</subject><subject>Mathematical analysis</subject><subject>modeling</subject><subject>Nanocomposites</subject><subject>Nanomaterials</subject><subject>Nanostructure</subject><subject>Nanotubes</subject><subject>nanowires</subject><subject>Nonlinear equations</subject><subject>Physics</subject><subject>Temperature</subject><subject>Tunneling</subject><subject>Voltage</subject><subject>Wires</subject><issn>1536-125X</issn><issn>1941-0085</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LAzEQhhdRsFZ_gHhZBPW0dWaTbJJjLX5BaS8VvIVsNoUt292apAf_vVm3UPDgaYaZZ16YJ0muESaIIB9Xi-liOckB2EQwpCBPkhFKihmAYKexZ6TIMGef58mF9xsA5AUTo2T2pJum9qE2aXC69bvOhVS3VWoba4LrfNBx59O6Tbc29KxJjXZl16atbruwL62_TM7WuvH26lDHycfL82r2ls2Xr--z6TwzRLCQrRktKiDC0LKUnHKQnFR5RaQwBdWEIZSQSy6AaITKViWIvORxTqihSAwZJw9D7s51X3vrg9rW3tim0a3t9l4JWaCQVOaRvP-XzLkUFLmM4O0fcNPtXRu_UBJz4BIRI4QDZKIP7-xa7Vy91e5bIajevvq1r3r7arAfb-4Owdob3ayjW1P74yHvg0XP3Qxcba09rhlQjoT8APNYi_k</recordid><startdate>20050901</startdate><enddate>20050901</enddate><creator>Svizhenko, A.</creator><creator>Anantram, M.P.</creator><creator>Govindan, T.R.</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>20050901</creationdate><title>Ballistic transport and electrostatics in metallic carbon nanotubes</title><author>Svizhenko, A. ; Anantram, M.P. ; Govindan, T.R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c385t-f546d038c4bb97470973d2d398c64a3510b0297803a10dedb082b735134c413c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Ballistic transport</topic><topic>Bias</topic><topic>Carbon nanotubes</topic><topic>Condensed matter: electronic structure, electrical, magnetic, and optical properties</topic><topic>Conductance</topic><topic>Electronic structure and electrical properties of surfaces, interfaces, thin films and low-dimensional structures</topic><topic>Electronic transport in multilayers, nanoscale materials and structures</topic><topic>Electrostatics</topic><topic>Exact sciences and technology</topic><topic>Green's function methods</topic><topic>inter-connects</topic><topic>Mathematical analysis</topic><topic>modeling</topic><topic>Nanocomposites</topic><topic>Nanomaterials</topic><topic>Nanostructure</topic><topic>Nanotubes</topic><topic>nanowires</topic><topic>Nonlinear equations</topic><topic>Physics</topic><topic>Temperature</topic><topic>Tunneling</topic><topic>Voltage</topic><topic>Wires</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Svizhenko, A.</creatorcontrib><creatorcontrib>Anantram, M.P.</creatorcontrib><creatorcontrib>Govindan, T.R.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005–Present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><jtitle>IEEE transactions on nanotechnology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Svizhenko, A.</au><au>Anantram, M.P.</au><au>Govindan, T.R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Ballistic transport and electrostatics in metallic carbon nanotubes</atitle><jtitle>IEEE transactions on nanotechnology</jtitle><stitle>TNANO</stitle><date>2005-09-01</date><risdate>2005</risdate><volume>4</volume><issue>5</issue><spage>557</spage><epage>562</epage><pages>557-562</pages><issn>1536-125X</issn><eissn>1941-0085</eissn><coden>ITNECU</coden><abstract>We calculate the current and electrostatic potential drop in metallic carbon nanotube wires self-consistently by solving the Green's function and electrostatics equations in the ballistic case. About one-tenth of the applied voltage drops across the bulk of a nanowire, independent of the lengths considered here. The remaining nine-tenths of the bias drops near the contacts, thereby creating a nonlinear potential drop. The scaling of the electric field at the center of the nanotube with length (L) is faster than 1/L (roughly 1/L/sup 1.25-1.75/). At room temperature, the low bias conductance of larger-diameter nanotubes is larger than 4e/sup 2//h due to occupation of noncrossing subbands. The physics of conductance evolution with bias due to Zener tunneling in noncrossing subbands is discussed.</abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/TNANO.2005.851409</doi><tpages>6</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1536-125X
ispartof IEEE transactions on nanotechnology, 2005-09, Vol.4 (5), p.557-562
issn 1536-125X
1941-0085
language eng
recordid cdi_pascalfrancis_primary_17111389
source IEEE Electronic Library (IEL) Journals
subjects Ballistic transport
Bias
Carbon nanotubes
Condensed matter: electronic structure, electrical, magnetic, and optical properties
Conductance
Electronic structure and electrical properties of surfaces, interfaces, thin films and low-dimensional structures
Electronic transport in multilayers, nanoscale materials and structures
Electrostatics
Exact sciences and technology
Green's function methods
inter-connects
Mathematical analysis
modeling
Nanocomposites
Nanomaterials
Nanostructure
Nanotubes
nanowires
Nonlinear equations
Physics
Temperature
Tunneling
Voltage
Wires
title Ballistic transport and electrostatics in metallic carbon nanotubes
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-11-15T22%3A31%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pasca&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Ballistic%20transport%20and%20electrostatics%20in%20metallic%20carbon%20nanotubes&rft.jtitle=IEEE%20transactions%20on%20nanotechnology&rft.au=Svizhenko,%20A.&rft.date=2005-09-01&rft.volume=4&rft.issue=5&rft.spage=557&rft.epage=562&rft.pages=557-562&rft.issn=1536-125X&rft.eissn=1941-0085&rft.coden=ITNECU&rft_id=info:doi/10.1109/TNANO.2005.851409&rft_dat=%3Cproquest_pasca%3E27984179%3C/proquest_pasca%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c385t-f546d038c4bb97470973d2d398c64a3510b0297803a10dedb082b735134c413c3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=912079111&rft_id=info:pmid/&rft_ieee_id=1504713&rfr_iscdi=true