Loading…

Local microenvironment tuning induces switching between electrochemical CO2 reduction pathways

Gas diffusion layers (GDL) have become a critical component in electrochemical CO2 reduction (CO2R) systems because they can enable high current densities needed for industrially relevant productivity. Besides this function, it is often assumed that the choice of catalyst and electrolyte play much m...

Full description

Saved in:
Bibliographic Details
Published in:Journal of materials chemistry. A, Materials for energy and sustainability Materials for energy and sustainability, 2023-05, Vol.11 (25), p.13493-13501
Main Authors: Surani Bin Dolmanan, Böhme, Annette, Fan, Ziting, King, Alex J, Fenwick, Aidan Q, Albertus Denny Handoko, Leow, Wan Ru, Weber, Adam Z, Ma, Xinbin, Khoo, Edwin, Atwater, Harry A, Lum, Yanwei
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 13501
container_issue 25
container_start_page 13493
container_title Journal of materials chemistry. A, Materials for energy and sustainability
container_volume 11
creator Surani Bin Dolmanan
Böhme, Annette
Fan, Ziting
King, Alex J
Fenwick, Aidan Q
Albertus Denny Handoko
Leow, Wan Ru
Weber, Adam Z
Ma, Xinbin
Khoo, Edwin
Atwater, Harry A
Lum, Yanwei
description Gas diffusion layers (GDL) have become a critical component in electrochemical CO2 reduction (CO2R) systems because they can enable high current densities needed for industrially relevant productivity. Besides this function, it is often assumed that the choice of catalyst and electrolyte play much more important roles than the GDL in influencing the observed product selectivity. Here, we show that tuning of the GDL pore size can be used to control the local microenvironment of the catalyst and hence, effect significant changes in catalytic outcomes. This concept is demonstrated using sputtered Ag films on hydrophobic PTFE substrates with 6 different pore sizes. Although Ag is known to be a predominantly CO generating catalyst, we find that smaller pore sizes favor the generation of formate up to a faradaic efficiency of 43%. Combined experimental and simulation results show that this is due to the influence of the pore size on CO2 mass transport, which alters the local pH at the electrode, resulting in reaction pathway switching between CO and formate. Our results highlight the importance of the local microenvironment as an experimental knob that can be rationally tuned for controlling product selectivity: a key consideration in the design of CO2R systems.
doi_str_mv 10.1039/d3ta02558f
format article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_2326155</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2829692802</sourcerecordid><originalsourceid>FETCH-LOGICAL-o246t-c0797250e125646f65f185c153a36a3c0917fbcabf10a66b13f2d22f5ea25d9c3</originalsourceid><addsrcrecordid>eNo9jk9LAzEUxIMoWGovfoKg59XkpckmRyn-g0IvenXJZl_clDapm6zFb--K4lzeMPzeMIRccnbDmTC3nSiWgZTan5AZMMmqemnU6b_X-pwsct6ySZoxZcyMvK2Tszu6D25IGD_DkOIeY6FljCG-0xC70WGm-RiK63-SFssRMVLcoStDcj1Ov1PDagN0wIkuIUV6sKU_2q98Qc683WVc_N05eX24f1k9VevN4_Pqbl0lWKpSOVabGiRDDlItlVfScy0dl8IKZYVjhte-dbb1nFmlWi48dABeogXZGSfm5Oq3N-USmuxCQde7FOM0sgEBiks5Qde_0GFIHyPm0mzTOMRpVwMajDKgGYhvU-JjBw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2829692802</pqid></control><display><type>article</type><title>Local microenvironment tuning induces switching between electrochemical CO2 reduction pathways</title><source>Royal Society of Chemistry:Jisc Collections:Royal Society of Chemistry Read and Publish 2022-2024 (reading list)</source><creator>Surani Bin Dolmanan ; Böhme, Annette ; Fan, Ziting ; King, Alex J ; Fenwick, Aidan Q ; Albertus Denny Handoko ; Leow, Wan Ru ; Weber, Adam Z ; Ma, Xinbin ; Khoo, Edwin ; Atwater, Harry A ; Lum, Yanwei</creator><creatorcontrib>Surani Bin Dolmanan ; Böhme, Annette ; Fan, Ziting ; King, Alex J ; Fenwick, Aidan Q ; Albertus Denny Handoko ; Leow, Wan Ru ; Weber, Adam Z ; Ma, Xinbin ; Khoo, Edwin ; Atwater, Harry A ; Lum, Yanwei ; Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States)</creatorcontrib><description>Gas diffusion layers (GDL) have become a critical component in electrochemical CO2 reduction (CO2R) systems because they can enable high current densities needed for industrially relevant productivity. Besides this function, it is often assumed that the choice of catalyst and electrolyte play much more important roles than the GDL in influencing the observed product selectivity. Here, we show that tuning of the GDL pore size can be used to control the local microenvironment of the catalyst and hence, effect significant changes in catalytic outcomes. This concept is demonstrated using sputtered Ag films on hydrophobic PTFE substrates with 6 different pore sizes. Although Ag is known to be a predominantly CO generating catalyst, we find that smaller pore sizes favor the generation of formate up to a faradaic efficiency of 43%. Combined experimental and simulation results show that this is due to the influence of the pore size on CO2 mass transport, which alters the local pH at the electrode, resulting in reaction pathway switching between CO and formate. Our results highlight the importance of the local microenvironment as an experimental knob that can be rationally tuned for controlling product selectivity: a key consideration in the design of CO2R systems.</description><identifier>ISSN: 2050-7488</identifier><identifier>EISSN: 2050-7496</identifier><identifier>DOI: 10.1039/d3ta02558f</identifier><language>eng</language><publisher>Cambridge: Royal Society of Chemistry</publisher><subject>Carbon dioxide ; Catalysts ; Critical components ; Diffusion layers ; Electrochemistry ; Gaseous diffusion ; Hydrophobicity ; INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY ; Mass transport ; Microenvironments ; Pore size ; Substrates ; Switching ; Tuning</subject><ispartof>Journal of materials chemistry. A, Materials for energy and sustainability, 2023-05, Vol.11 (25), p.13493-13501</ispartof><rights>Copyright Royal Society of Chemistry 2023</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000000281894813 ; 0000000277491624 ; 0000000231561607 ; 0000000172612098 ; 0000000194350201 ; 0000000251578633 ; 0000000231717982 ; 0000000222100518 ; 0000000201618406</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,315,786,790,891,27957,27958</link.rule.ids><backlink>$$Uhttps://www.osti.gov/servlets/purl/2326155$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Surani Bin Dolmanan</creatorcontrib><creatorcontrib>Böhme, Annette</creatorcontrib><creatorcontrib>Fan, Ziting</creatorcontrib><creatorcontrib>King, Alex J</creatorcontrib><creatorcontrib>Fenwick, Aidan Q</creatorcontrib><creatorcontrib>Albertus Denny Handoko</creatorcontrib><creatorcontrib>Leow, Wan Ru</creatorcontrib><creatorcontrib>Weber, Adam Z</creatorcontrib><creatorcontrib>Ma, Xinbin</creatorcontrib><creatorcontrib>Khoo, Edwin</creatorcontrib><creatorcontrib>Atwater, Harry A</creatorcontrib><creatorcontrib>Lum, Yanwei</creatorcontrib><creatorcontrib>Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States)</creatorcontrib><title>Local microenvironment tuning induces switching between electrochemical CO2 reduction pathways</title><title>Journal of materials chemistry. A, Materials for energy and sustainability</title><description>Gas diffusion layers (GDL) have become a critical component in electrochemical CO2 reduction (CO2R) systems because they can enable high current densities needed for industrially relevant productivity. Besides this function, it is often assumed that the choice of catalyst and electrolyte play much more important roles than the GDL in influencing the observed product selectivity. Here, we show that tuning of the GDL pore size can be used to control the local microenvironment of the catalyst and hence, effect significant changes in catalytic outcomes. This concept is demonstrated using sputtered Ag films on hydrophobic PTFE substrates with 6 different pore sizes. Although Ag is known to be a predominantly CO generating catalyst, we find that smaller pore sizes favor the generation of formate up to a faradaic efficiency of 43%. Combined experimental and simulation results show that this is due to the influence of the pore size on CO2 mass transport, which alters the local pH at the electrode, resulting in reaction pathway switching between CO and formate. Our results highlight the importance of the local microenvironment as an experimental knob that can be rationally tuned for controlling product selectivity: a key consideration in the design of CO2R systems.</description><subject>Carbon dioxide</subject><subject>Catalysts</subject><subject>Critical components</subject><subject>Diffusion layers</subject><subject>Electrochemistry</subject><subject>Gaseous diffusion</subject><subject>Hydrophobicity</subject><subject>INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY</subject><subject>Mass transport</subject><subject>Microenvironments</subject><subject>Pore size</subject><subject>Substrates</subject><subject>Switching</subject><subject>Tuning</subject><issn>2050-7488</issn><issn>2050-7496</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNo9jk9LAzEUxIMoWGovfoKg59XkpckmRyn-g0IvenXJZl_clDapm6zFb--K4lzeMPzeMIRccnbDmTC3nSiWgZTan5AZMMmqemnU6b_X-pwsct6ySZoxZcyMvK2Tszu6D25IGD_DkOIeY6FljCG-0xC70WGm-RiK63-SFssRMVLcoStDcj1Ov1PDagN0wIkuIUV6sKU_2q98Qc683WVc_N05eX24f1k9VevN4_Pqbl0lWKpSOVabGiRDDlItlVfScy0dl8IKZYVjhte-dbb1nFmlWi48dABeogXZGSfm5Oq3N-USmuxCQde7FOM0sgEBiks5Qde_0GFIHyPm0mzTOMRpVwMajDKgGYhvU-JjBw</recordid><startdate>20230530</startdate><enddate>20230530</enddate><creator>Surani Bin Dolmanan</creator><creator>Böhme, Annette</creator><creator>Fan, Ziting</creator><creator>King, Alex J</creator><creator>Fenwick, Aidan Q</creator><creator>Albertus Denny Handoko</creator><creator>Leow, Wan Ru</creator><creator>Weber, Adam Z</creator><creator>Ma, Xinbin</creator><creator>Khoo, Edwin</creator><creator>Atwater, Harry A</creator><creator>Lum, Yanwei</creator><general>Royal Society of Chemistry</general><scope>7SP</scope><scope>7SR</scope><scope>7ST</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>JG9</scope><scope>L7M</scope><scope>SOI</scope><scope>OIOZB</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000000281894813</orcidid><orcidid>https://orcid.org/0000000277491624</orcidid><orcidid>https://orcid.org/0000000231561607</orcidid><orcidid>https://orcid.org/0000000172612098</orcidid><orcidid>https://orcid.org/0000000194350201</orcidid><orcidid>https://orcid.org/0000000251578633</orcidid><orcidid>https://orcid.org/0000000231717982</orcidid><orcidid>https://orcid.org/0000000222100518</orcidid><orcidid>https://orcid.org/0000000201618406</orcidid></search><sort><creationdate>20230530</creationdate><title>Local microenvironment tuning induces switching between electrochemical CO2 reduction pathways</title><author>Surani Bin Dolmanan ; Böhme, Annette ; Fan, Ziting ; King, Alex J ; Fenwick, Aidan Q ; Albertus Denny Handoko ; Leow, Wan Ru ; Weber, Adam Z ; Ma, Xinbin ; Khoo, Edwin ; Atwater, Harry A ; Lum, Yanwei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-o246t-c0797250e125646f65f185c153a36a3c0917fbcabf10a66b13f2d22f5ea25d9c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Carbon dioxide</topic><topic>Catalysts</topic><topic>Critical components</topic><topic>Diffusion layers</topic><topic>Electrochemistry</topic><topic>Gaseous diffusion</topic><topic>Hydrophobicity</topic><topic>INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY</topic><topic>Mass transport</topic><topic>Microenvironments</topic><topic>Pore size</topic><topic>Substrates</topic><topic>Switching</topic><topic>Tuning</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Surani Bin Dolmanan</creatorcontrib><creatorcontrib>Böhme, Annette</creatorcontrib><creatorcontrib>Fan, Ziting</creatorcontrib><creatorcontrib>King, Alex J</creatorcontrib><creatorcontrib>Fenwick, Aidan Q</creatorcontrib><creatorcontrib>Albertus Denny Handoko</creatorcontrib><creatorcontrib>Leow, Wan Ru</creatorcontrib><creatorcontrib>Weber, Adam Z</creatorcontrib><creatorcontrib>Ma, Xinbin</creatorcontrib><creatorcontrib>Khoo, Edwin</creatorcontrib><creatorcontrib>Atwater, Harry A</creatorcontrib><creatorcontrib>Lum, Yanwei</creatorcontrib><creatorcontrib>Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States)</creatorcontrib><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Environment Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Environment Abstracts</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>Journal of materials chemistry. A, Materials for energy and sustainability</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Surani Bin Dolmanan</au><au>Böhme, Annette</au><au>Fan, Ziting</au><au>King, Alex J</au><au>Fenwick, Aidan Q</au><au>Albertus Denny Handoko</au><au>Leow, Wan Ru</au><au>Weber, Adam Z</au><au>Ma, Xinbin</au><au>Khoo, Edwin</au><au>Atwater, Harry A</au><au>Lum, Yanwei</au><aucorp>Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Local microenvironment tuning induces switching between electrochemical CO2 reduction pathways</atitle><jtitle>Journal of materials chemistry. A, Materials for energy and sustainability</jtitle><date>2023-05-30</date><risdate>2023</risdate><volume>11</volume><issue>25</issue><spage>13493</spage><epage>13501</epage><pages>13493-13501</pages><issn>2050-7488</issn><eissn>2050-7496</eissn><notes>SC0021266; AC02-05CH11231</notes><notes>USDOE Office of Science (SC), Basic Energy Sciences (BES)</notes><abstract>Gas diffusion layers (GDL) have become a critical component in electrochemical CO2 reduction (CO2R) systems because they can enable high current densities needed for industrially relevant productivity. Besides this function, it is often assumed that the choice of catalyst and electrolyte play much more important roles than the GDL in influencing the observed product selectivity. Here, we show that tuning of the GDL pore size can be used to control the local microenvironment of the catalyst and hence, effect significant changes in catalytic outcomes. This concept is demonstrated using sputtered Ag films on hydrophobic PTFE substrates with 6 different pore sizes. Although Ag is known to be a predominantly CO generating catalyst, we find that smaller pore sizes favor the generation of formate up to a faradaic efficiency of 43%. Combined experimental and simulation results show that this is due to the influence of the pore size on CO2 mass transport, which alters the local pH at the electrode, resulting in reaction pathway switching between CO and formate. Our results highlight the importance of the local microenvironment as an experimental knob that can be rationally tuned for controlling product selectivity: a key consideration in the design of CO2R systems.</abstract><cop>Cambridge</cop><pub>Royal Society of Chemistry</pub><doi>10.1039/d3ta02558f</doi><tpages>9</tpages><orcidid>https://orcid.org/0000000281894813</orcidid><orcidid>https://orcid.org/0000000277491624</orcidid><orcidid>https://orcid.org/0000000231561607</orcidid><orcidid>https://orcid.org/0000000172612098</orcidid><orcidid>https://orcid.org/0000000194350201</orcidid><orcidid>https://orcid.org/0000000251578633</orcidid><orcidid>https://orcid.org/0000000231717982</orcidid><orcidid>https://orcid.org/0000000222100518</orcidid><orcidid>https://orcid.org/0000000201618406</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2050-7488
ispartof Journal of materials chemistry. A, Materials for energy and sustainability, 2023-05, Vol.11 (25), p.13493-13501
issn 2050-7488
2050-7496
language eng
recordid cdi_osti_scitechconnect_2326155
source Royal Society of Chemistry:Jisc Collections:Royal Society of Chemistry Read and Publish 2022-2024 (reading list)
subjects Carbon dioxide
Catalysts
Critical components
Diffusion layers
Electrochemistry
Gaseous diffusion
Hydrophobicity
INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY
Mass transport
Microenvironments
Pore size
Substrates
Switching
Tuning
title Local microenvironment tuning induces switching between electrochemical CO2 reduction pathways
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-09-22T22%3A38%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Local%20microenvironment%20tuning%20induces%20switching%20between%20electrochemical%20CO2%20reduction%20pathways&rft.jtitle=Journal%20of%20materials%20chemistry.%20A,%20Materials%20for%20energy%20and%20sustainability&rft.au=Surani%20Bin%20Dolmanan&rft.aucorp=Lawrence%20Berkeley%20National%20Laboratory%20(LBNL),%20Berkeley,%20CA%20(United%20States)&rft.date=2023-05-30&rft.volume=11&rft.issue=25&rft.spage=13493&rft.epage=13501&rft.pages=13493-13501&rft.issn=2050-7488&rft.eissn=2050-7496&rft_id=info:doi/10.1039/d3ta02558f&rft_dat=%3Cproquest_osti_%3E2829692802%3C/proquest_osti_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-o246t-c0797250e125646f65f185c153a36a3c0917fbcabf10a66b13f2d22f5ea25d9c3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2829692802&rft_id=info:pmid/&rfr_iscdi=true