Loading…
Anti-viral immune response in the lung and thymus: Molecular characterization and expression analysis of immunoproteasome subunits LMP2, LMP7 and MECL-1 in pigs
Both the lung and the thymus are vital target organ for pathogens including viruses. The immunoproteasome (i-proteasome) enhances antigen presentation for MHC class I molecules to activate CD8+T lymphocyte. These facilitate antiviral adaptive immune response. Our previous study found that, expressio...
Saved in:
Published in: | Biochemical and biophysical research communications 2018-08, Vol.502 (4), p.472-478 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Both the lung and the thymus are vital target organ for pathogens including viruses. The immunoproteasome (i-proteasome) enhances antigen presentation for MHC class I molecules to activate CD8+T lymphocyte. These facilitate antiviral adaptive immune response. Our previous study found that, expression of i-proteasome subunits in porcine lung was altered during normal and inflammatory conditions. To date, the expression of i-proteasome subunits in porcine thymus to viruses has not been investigated. In the present study, LMP2, LMP7, and MECL-1 were cloned, identified and their sequences encoded predicted proteins of 216, 275, and 278 amino acids, respectively. Expression of LMP2, LMP7, and MECL-1, in the cytoplasm and nucleus, was markedly altered in the porcine reproductive and respiratory syndrome virus (PRRSV)-infected lung and thymus. And dendritic cells and epithelial cells readily expressed the i-proteasome subunit LMP2 in the thymus of PRRSV-infected pigs compared to that in mock-infected pigs. Additionally, the in vitro stimulation of a PAM cell line with PolyI:C for 12 and 24 h resulted in increased LMP2, LMP7, and MECL-1 expression. These results suggest a central role for these complexes in the activation of an antiviral immune response in pigs. A better understanding of the role of the i-proteasome in different cell types, tissues, and hosts could improve vaccine design and facilitate the development of effective treatment strategies for viral infections. |
---|---|
ISSN: | 0006-291X 1090-2104 |
DOI: | 10.1016/j.bbrc.2018.05.190 |