Loading…

Automated identification of dominant physical processes

The identification of processes that locally and approximately dominate dynamical system behavior has enabled significant advances in understanding and modeling nonlinear differential dynamical systems. Conventional methods of dominant process identification involve piecemeal and ad hoc (non-rigorou...

Full description

Saved in:
Bibliographic Details
Published in:Engineering applications of artificial intelligence 2022-11, Vol.116, p.105496, Article 105496
Main Authors: Kaiser, Bryan E., Saenz, Juan A., Sonnewald, Maike, Livescu, Daniel
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c387t-6c807d8e6d2c3efd1706a442c66222ce93967d7c16766259ba9c4feee740eeda3
cites cdi_FETCH-LOGICAL-c387t-6c807d8e6d2c3efd1706a442c66222ce93967d7c16766259ba9c4feee740eeda3
container_end_page
container_issue
container_start_page 105496
container_title Engineering applications of artificial intelligence
container_volume 116
creator Kaiser, Bryan E.
Saenz, Juan A.
Sonnewald, Maike
Livescu, Daniel
description The identification of processes that locally and approximately dominate dynamical system behavior has enabled significant advances in understanding and modeling nonlinear differential dynamical systems. Conventional methods of dominant process identification involve piecemeal and ad hoc (non-rigorous, informal) scaling analyses to identify dominant balances of governing equation terms and to delineate the spatiotemporal boundaries (boundaries in space and/or time) of each dominant balance. For the first time, we present an objective global measure of the fit of dominant balances to observations, which is desirable for automation, and was previously undefined. Furthermore, we propose a formal definition of the dominant balance identification problem in the form of an optimization problem. We show that the optimization can be performed by various machine learning algorithms, enabling the automatic identification of dominant balances. Our method is algorithm agnostic and it eliminates reliance upon expert knowledge to identify dominant balances which are not known beforehand. [Display omitted] •Discovery of dominant balances of two or more equation terms yields insights.•Dominant balances often arise in nonlinear dynamical systems.•Automated dominant balance discovery requires hyperparameter tuning.•We present a robust objective criterion for dominant balance identification.•Objective hyper-parameter tuning enables automated dominant balance discovery.
doi_str_mv 10.1016/j.engappai.2022.105496
format article
fullrecord <record><control><sourceid>elsevier_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_2290302</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0952197622004869</els_id><sourcerecordid>S0952197622004869</sourcerecordid><originalsourceid>FETCH-LOGICAL-c387t-6c807d8e6d2c3efd1706a442c66222ce93967d7c16766259ba9c4feee740eeda3</originalsourceid><addsrcrecordid>eNqFkE9LAzEQxYMoWKtfQRbvW_Nnm2xulqJVKHjRc4iTWZvSJksShX57d1k9exp4vHlv5kfILaMLRpm83y8wfNq-t37BKeeDuGy0PCMz1ipRSyX1OZlRveQ100pekquc95RS0TZyRtTqq8SjLegq7zAU33mwxcdQxa5y8eiDDaXqd6c86IeqTxEwZ8zX5KKzh4w3v3NO3p8e39bP9fZ187JebWsQrSq1hJYq16J0HAR2jikqbdNwkJJzDqiFlsopYMOZki_1h9XQdIioGororJiTuyk35uJNBl8QdhBDQCiGc00F5YNJTiZIMeeEnemTP9p0MoyakZHZmz9GZmRkJkbD4sO0iMML3x7T2IAB0Pk0Frjo_4v4AYALc3c</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Automated identification of dominant physical processes</title><source>ScienceDirect Freedom Collection</source><creator>Kaiser, Bryan E. ; Saenz, Juan A. ; Sonnewald, Maike ; Livescu, Daniel</creator><creatorcontrib>Kaiser, Bryan E. ; Saenz, Juan A. ; Sonnewald, Maike ; Livescu, Daniel ; Los Alamos National Laboratory (LANL), Los Alamos, NM (United States)</creatorcontrib><description>The identification of processes that locally and approximately dominate dynamical system behavior has enabled significant advances in understanding and modeling nonlinear differential dynamical systems. Conventional methods of dominant process identification involve piecemeal and ad hoc (non-rigorous, informal) scaling analyses to identify dominant balances of governing equation terms and to delineate the spatiotemporal boundaries (boundaries in space and/or time) of each dominant balance. For the first time, we present an objective global measure of the fit of dominant balances to observations, which is desirable for automation, and was previously undefined. Furthermore, we propose a formal definition of the dominant balance identification problem in the form of an optimization problem. We show that the optimization can be performed by various machine learning algorithms, enabling the automatic identification of dominant balances. Our method is algorithm agnostic and it eliminates reliance upon expert knowledge to identify dominant balances which are not known beforehand. [Display omitted] •Discovery of dominant balances of two or more equation terms yields insights.•Dominant balances often arise in nonlinear dynamical systems.•Automated dominant balance discovery requires hyperparameter tuning.•We present a robust objective criterion for dominant balance identification.•Objective hyper-parameter tuning enables automated dominant balance discovery.</description><identifier>ISSN: 0952-1976</identifier><identifier>EISSN: 1873-6769</identifier><identifier>DOI: 10.1016/j.engappai.2022.105496</identifier><language>eng</language><publisher>United States: Elsevier Ltd</publisher><subject>Clustering ; Dominant balance ; Dynamical process ; ENGINEERING ; Nonlinear partial differential equations ; scale analysis ; Unsupervised machine learning</subject><ispartof>Engineering applications of artificial intelligence, 2022-11, Vol.116, p.105496, Article 105496</ispartof><rights>2022 Elsevier Ltd</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c387t-6c807d8e6d2c3efd1706a442c66222ce93967d7c16766259ba9c4feee740eeda3</citedby><cites>FETCH-LOGICAL-c387t-6c807d8e6d2c3efd1706a442c66222ce93967d7c16766259ba9c4feee740eeda3</cites><orcidid>0000-0003-2367-1547 ; 0000-0002-4652-6935 ; 0000000262660069 ; 0000000323671547 ; 0000000246526935</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,315,786,790,891,27957,27958</link.rule.ids><backlink>$$Uhttps://www.osti.gov/servlets/purl/2290302$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Kaiser, Bryan E.</creatorcontrib><creatorcontrib>Saenz, Juan A.</creatorcontrib><creatorcontrib>Sonnewald, Maike</creatorcontrib><creatorcontrib>Livescu, Daniel</creatorcontrib><creatorcontrib>Los Alamos National Laboratory (LANL), Los Alamos, NM (United States)</creatorcontrib><title>Automated identification of dominant physical processes</title><title>Engineering applications of artificial intelligence</title><description>The identification of processes that locally and approximately dominate dynamical system behavior has enabled significant advances in understanding and modeling nonlinear differential dynamical systems. Conventional methods of dominant process identification involve piecemeal and ad hoc (non-rigorous, informal) scaling analyses to identify dominant balances of governing equation terms and to delineate the spatiotemporal boundaries (boundaries in space and/or time) of each dominant balance. For the first time, we present an objective global measure of the fit of dominant balances to observations, which is desirable for automation, and was previously undefined. Furthermore, we propose a formal definition of the dominant balance identification problem in the form of an optimization problem. We show that the optimization can be performed by various machine learning algorithms, enabling the automatic identification of dominant balances. Our method is algorithm agnostic and it eliminates reliance upon expert knowledge to identify dominant balances which are not known beforehand. [Display omitted] •Discovery of dominant balances of two or more equation terms yields insights.•Dominant balances often arise in nonlinear dynamical systems.•Automated dominant balance discovery requires hyperparameter tuning.•We present a robust objective criterion for dominant balance identification.•Objective hyper-parameter tuning enables automated dominant balance discovery.</description><subject>Clustering</subject><subject>Dominant balance</subject><subject>Dynamical process</subject><subject>ENGINEERING</subject><subject>Nonlinear partial differential equations</subject><subject>scale analysis</subject><subject>Unsupervised machine learning</subject><issn>0952-1976</issn><issn>1873-6769</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNqFkE9LAzEQxYMoWKtfQRbvW_Nnm2xulqJVKHjRc4iTWZvSJksShX57d1k9exp4vHlv5kfILaMLRpm83y8wfNq-t37BKeeDuGy0PCMz1ipRSyX1OZlRveQ100pekquc95RS0TZyRtTqq8SjLegq7zAU33mwxcdQxa5y8eiDDaXqd6c86IeqTxEwZ8zX5KKzh4w3v3NO3p8e39bP9fZ187JebWsQrSq1hJYq16J0HAR2jikqbdNwkJJzDqiFlsopYMOZki_1h9XQdIioGororJiTuyk35uJNBl8QdhBDQCiGc00F5YNJTiZIMeeEnemTP9p0MoyakZHZmz9GZmRkJkbD4sO0iMML3x7T2IAB0Pk0Frjo_4v4AYALc3c</recordid><startdate>20221101</startdate><enddate>20221101</enddate><creator>Kaiser, Bryan E.</creator><creator>Saenz, Juan A.</creator><creator>Sonnewald, Maike</creator><creator>Livescu, Daniel</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>AAYXX</scope><scope>CITATION</scope><scope>OIOZB</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0003-2367-1547</orcidid><orcidid>https://orcid.org/0000-0002-4652-6935</orcidid><orcidid>https://orcid.org/0000000262660069</orcidid><orcidid>https://orcid.org/0000000323671547</orcidid><orcidid>https://orcid.org/0000000246526935</orcidid></search><sort><creationdate>20221101</creationdate><title>Automated identification of dominant physical processes</title><author>Kaiser, Bryan E. ; Saenz, Juan A. ; Sonnewald, Maike ; Livescu, Daniel</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c387t-6c807d8e6d2c3efd1706a442c66222ce93967d7c16766259ba9c4feee740eeda3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Clustering</topic><topic>Dominant balance</topic><topic>Dynamical process</topic><topic>ENGINEERING</topic><topic>Nonlinear partial differential equations</topic><topic>scale analysis</topic><topic>Unsupervised machine learning</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kaiser, Bryan E.</creatorcontrib><creatorcontrib>Saenz, Juan A.</creatorcontrib><creatorcontrib>Sonnewald, Maike</creatorcontrib><creatorcontrib>Livescu, Daniel</creatorcontrib><creatorcontrib>Los Alamos National Laboratory (LANL), Los Alamos, NM (United States)</creatorcontrib><collection>CrossRef</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>Engineering applications of artificial intelligence</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kaiser, Bryan E.</au><au>Saenz, Juan A.</au><au>Sonnewald, Maike</au><au>Livescu, Daniel</au><aucorp>Los Alamos National Laboratory (LANL), Los Alamos, NM (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Automated identification of dominant physical processes</atitle><jtitle>Engineering applications of artificial intelligence</jtitle><date>2022-11-01</date><risdate>2022</risdate><volume>116</volume><spage>105496</spage><pages>105496-</pages><artnum>105496</artnum><issn>0952-1976</issn><eissn>1873-6769</eissn><notes>LA-UR-22-20119</notes><notes>89233218CNA000001; NA18OAR4320123</notes><notes>USDOE Laboratory Directed Research and Development (LDRD) Program</notes><notes>USDOE National Nuclear Security Administration (NNSA)</notes><notes>National Oceanic and Atmospheric Administration (NOAA)</notes><abstract>The identification of processes that locally and approximately dominate dynamical system behavior has enabled significant advances in understanding and modeling nonlinear differential dynamical systems. Conventional methods of dominant process identification involve piecemeal and ad hoc (non-rigorous, informal) scaling analyses to identify dominant balances of governing equation terms and to delineate the spatiotemporal boundaries (boundaries in space and/or time) of each dominant balance. For the first time, we present an objective global measure of the fit of dominant balances to observations, which is desirable for automation, and was previously undefined. Furthermore, we propose a formal definition of the dominant balance identification problem in the form of an optimization problem. We show that the optimization can be performed by various machine learning algorithms, enabling the automatic identification of dominant balances. Our method is algorithm agnostic and it eliminates reliance upon expert knowledge to identify dominant balances which are not known beforehand. [Display omitted] •Discovery of dominant balances of two or more equation terms yields insights.•Dominant balances often arise in nonlinear dynamical systems.•Automated dominant balance discovery requires hyperparameter tuning.•We present a robust objective criterion for dominant balance identification.•Objective hyper-parameter tuning enables automated dominant balance discovery.</abstract><cop>United States</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.engappai.2022.105496</doi><orcidid>https://orcid.org/0000-0003-2367-1547</orcidid><orcidid>https://orcid.org/0000-0002-4652-6935</orcidid><orcidid>https://orcid.org/0000000262660069</orcidid><orcidid>https://orcid.org/0000000323671547</orcidid><orcidid>https://orcid.org/0000000246526935</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0952-1976
ispartof Engineering applications of artificial intelligence, 2022-11, Vol.116, p.105496, Article 105496
issn 0952-1976
1873-6769
language eng
recordid cdi_osti_scitechconnect_2290302
source ScienceDirect Freedom Collection
subjects Clustering
Dominant balance
Dynamical process
ENGINEERING
Nonlinear partial differential equations
scale analysis
Unsupervised machine learning
title Automated identification of dominant physical processes
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-09-22T04%3A47%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Automated%20identification%20of%20dominant%20physical%20processes&rft.jtitle=Engineering%20applications%20of%20artificial%20intelligence&rft.au=Kaiser,%20Bryan%20E.&rft.aucorp=Los%20Alamos%20National%20Laboratory%20(LANL),%20Los%20Alamos,%20NM%20(United%20States)&rft.date=2022-11-01&rft.volume=116&rft.spage=105496&rft.pages=105496-&rft.artnum=105496&rft.issn=0952-1976&rft.eissn=1873-6769&rft_id=info:doi/10.1016/j.engappai.2022.105496&rft_dat=%3Celsevier_osti_%3ES0952197622004869%3C/elsevier_osti_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c387t-6c807d8e6d2c3efd1706a442c66222ce93967d7c16766259ba9c4feee740eeda3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true