Loading…

Structural, magnetic, and spectroscopic studies of YAgSn, TmAgSn, and LuAgSn

The rare earth–silver–stannides YAgSn, TmAgSn, and LuAgSn were synthesized from the elements by arc-melting and subsequent annealing. The three stannides were investigated by X-ray powder and single-crystal diffraction: NdPtSb type, P6 3 mc, Z = 2 , a = 468.3 ( 1 ) , c = 737.2 ( 2 ) pm, w R 2 = 0.03...

Full description

Saved in:
Bibliographic Details
Published in:Journal of solid state chemistry 2006-08, Vol.179 (8), p.2376-2385
Main Authors: Peter Sebastian, C., Eckert, Hellmut, Fehse, Constanze, Wright, Jon P., Paul Attfield, J., Johrendt, Dirk, Rayaprol, Sudhindra, Hoffmann, Rolf-Dieter, Pöttgen, Rainer
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c358t-3077ae1fd921cd7245704531081b98e90587eb27e0d7a9e1a2f7be77cb391ca73
cites cdi_FETCH-LOGICAL-c358t-3077ae1fd921cd7245704531081b98e90587eb27e0d7a9e1a2f7be77cb391ca73
container_end_page 2385
container_issue 8
container_start_page 2376
container_title Journal of solid state chemistry
container_volume 179
creator Peter Sebastian, C.
Eckert, Hellmut
Fehse, Constanze
Wright, Jon P.
Paul Attfield, J.
Johrendt, Dirk
Rayaprol, Sudhindra
Hoffmann, Rolf-Dieter
Pöttgen, Rainer
description The rare earth–silver–stannides YAgSn, TmAgSn, and LuAgSn were synthesized from the elements by arc-melting and subsequent annealing. The three stannides were investigated by X-ray powder and single-crystal diffraction: NdPtSb type, P6 3 mc, Z = 2 , a = 468.3 ( 1 ) , c = 737.2 ( 2 ) pm, w R 2 = 0.0343 , 353 F 2 values, 12 variables for YAgSn, and ZrNiAl type, P6¯2 m, a = 726.4 ( 2 ) , c = 443.7 ( 1 ) pm , w R 2 = 0.0399 , 659 F 2 values, 15 variables for TmAgSn, and a = 723.8 ( 2 ) , c = 442.47 ( 9 ) pm , w R 2 = 0.0674 , 364 F 2 values, 15 variables for LuAgSn. Besides conventional laboratory X-ray data with monochromatized Mo radiation, the structures were also refined on the basis of synchrotron data with λ = 48.725 pm , in order to clarify the silver–tin ordering more precisely. YAgSn has puckered, two-dimensional [AgSn] networks with Ag–Sn distances of 278 pm, while the [AgSn] networks of TmAgSn and LuAgSn are three-dimensional with Ag–Sn distances of 279 and 284 pm for LuAgSn. Susceptibility measurements indicate Pauli paramagnetism for YAgSn and LuAgSn. TmAgSn is a Curie–Weiss paramagnet with an experimental magnetic moment of 7.2 μ B/Tm. No magnetic ordering is evident down to 2 K. The local environments of the tin sites in these compounds were characterized by 119Sn Mössbauer spectroscopy and solid-state NMR (in YAgSn and LuAgSn), confirming the tin site multiplicities proposed from the structure solutions and the absence of Sn/Ag site disordering. Mössbauer quadrupolar splittings were found in good agreement with calculated electric field gradients predicted quantum chemically by the WIEN2k code. Furthermore, an excellent correlation was found between experimental 119Sn nuclear magnetic shielding anisotropies (determined via MAS-NMR) and calculated electric field gradients. Electronic structure calculations predict metallic properties with strong Ag–Sn bonds and also significant Ag–Ag bonding in LuAgSn. Crystal Structure of YAgSn.
doi_str_mv 10.1016/j.jssc.2006.04.038
format article
fullrecord <record><control><sourceid>elsevier_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_20905387</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0022459606002283</els_id><sourcerecordid>S0022459606002283</sourcerecordid><originalsourceid>FETCH-LOGICAL-c358t-3077ae1fd921cd7245704531081b98e90587eb27e0d7a9e1a2f7be77cb391ca73</originalsourceid><addsrcrecordid>eNp9kM1LxDAQxYMouK7-A54K4m1bJ-lHWvCyLH5BwcOuoKeQTtM1ZbctSSr439tQwZunmcPvzbz3CLmmEFGg2V0btdZixACyCJII4vyELCgUachZ9n5KFgCMhUlaZOfkwtoWgNI0Txak3DozohuNPKyCo9x3ymlcBbKrAzsodKa32A8aA-vGWisb9E3wsd5vu1WwO87Ts-Xo90ty1siDVVe_c0neHh92m-ewfH162azLEOM0d2EMnEtFm7pgFGvOkpRDksYUcloVuSogzbmqGFdQc1koKlnDK8U5VnFBUfJ4SW7mu711WljUTuEn9l03GRYMpgNx7ik2UziFsEY1YjD6KM23oCB8a6IVvjXhWxOQiKm1SXQ7iwZpUR4aIzvU9k-ZA-NF5rn7mVNTzi-tjLehOlS1Nt5F3ev_3vwAaEaBKA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Structural, magnetic, and spectroscopic studies of YAgSn, TmAgSn, and LuAgSn</title><source>ScienceDirect Freedom Collection</source><creator>Peter Sebastian, C. ; Eckert, Hellmut ; Fehse, Constanze ; Wright, Jon P. ; Paul Attfield, J. ; Johrendt, Dirk ; Rayaprol, Sudhindra ; Hoffmann, Rolf-Dieter ; Pöttgen, Rainer</creator><creatorcontrib>Peter Sebastian, C. ; Eckert, Hellmut ; Fehse, Constanze ; Wright, Jon P. ; Paul Attfield, J. ; Johrendt, Dirk ; Rayaprol, Sudhindra ; Hoffmann, Rolf-Dieter ; Pöttgen, Rainer</creatorcontrib><description>The rare earth–silver–stannides YAgSn, TmAgSn, and LuAgSn were synthesized from the elements by arc-melting and subsequent annealing. The three stannides were investigated by X-ray powder and single-crystal diffraction: NdPtSb type, P6 3 mc, Z = 2 , a = 468.3 ( 1 ) , c = 737.2 ( 2 ) pm, w R 2 = 0.0343 , 353 F 2 values, 12 variables for YAgSn, and ZrNiAl type, P6¯2 m, a = 726.4 ( 2 ) , c = 443.7 ( 1 ) pm , w R 2 = 0.0399 , 659 F 2 values, 15 variables for TmAgSn, and a = 723.8 ( 2 ) , c = 442.47 ( 9 ) pm , w R 2 = 0.0674 , 364 F 2 values, 15 variables for LuAgSn. Besides conventional laboratory X-ray data with monochromatized Mo radiation, the structures were also refined on the basis of synchrotron data with λ = 48.725 pm , in order to clarify the silver–tin ordering more precisely. YAgSn has puckered, two-dimensional [AgSn] networks with Ag–Sn distances of 278 pm, while the [AgSn] networks of TmAgSn and LuAgSn are three-dimensional with Ag–Sn distances of 279 and 284 pm for LuAgSn. Susceptibility measurements indicate Pauli paramagnetism for YAgSn and LuAgSn. TmAgSn is a Curie–Weiss paramagnet with an experimental magnetic moment of 7.2 μ B/Tm. No magnetic ordering is evident down to 2 K. The local environments of the tin sites in these compounds were characterized by 119Sn Mössbauer spectroscopy and solid-state NMR (in YAgSn and LuAgSn), confirming the tin site multiplicities proposed from the structure solutions and the absence of Sn/Ag site disordering. Mössbauer quadrupolar splittings were found in good agreement with calculated electric field gradients predicted quantum chemically by the WIEN2k code. Furthermore, an excellent correlation was found between experimental 119Sn nuclear magnetic shielding anisotropies (determined via MAS-NMR) and calculated electric field gradients. Electronic structure calculations predict metallic properties with strong Ag–Sn bonds and also significant Ag–Ag bonding in LuAgSn. Crystal Structure of YAgSn.</description><identifier>ISSN: 0022-4596</identifier><identifier>EISSN: 1095-726X</identifier><identifier>DOI: 10.1016/j.jssc.2006.04.038</identifier><identifier>CODEN: JSSCBI</identifier><language>eng</language><publisher>San Diego, CA: Elsevier Inc</publisher><subject>Alloys ; ANNEALING ; Condensed matter: electronic structure, electrical, magnetic, and optical properties ; Condensed matter: structure, mechanical and thermal properties ; Exact sciences and technology ; HEXAGONAL LATTICES ; LUTETIUM COMPOUNDS ; Magnetic resonances and relaxations in condensed matter, mössbauer effect ; MAGNETIC SHIELDING ; MAGNETIZATION ; MATERIALS SCIENCE ; MELTING ; MOESSBAUER EFFECT ; MONOCRYSTALS ; Mossbauer effect; other γ-ray spectroscopy ; Mössbauer effect; other γ-ray spectroscopy ; Mössbauer spectroscopy ; NUCLEAR MAGNETIC RESONANCE ; PARAMAGNETISM ; Physics ; SILVER COMPOUNDS ; Solid-state NMR ; Stannides ; Structure of solids and liquids; crystallography ; Structure of specific crystalline solids ; THULIUM COMPOUNDS ; TIN COMPOUNDS ; X-RAY DIFFRACTION ; YTTRIUM COMPOUNDS</subject><ispartof>Journal of solid state chemistry, 2006-08, Vol.179 (8), p.2376-2385</ispartof><rights>2006 Elsevier Inc.</rights><rights>2006 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c358t-3077ae1fd921cd7245704531081b98e90587eb27e0d7a9e1a2f7be77cb391ca73</citedby><cites>FETCH-LOGICAL-c358t-3077ae1fd921cd7245704531081b98e90587eb27e0d7a9e1a2f7be77cb391ca73</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,315,786,790,891,27957,27958</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=18027968$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/20905387$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Peter Sebastian, C.</creatorcontrib><creatorcontrib>Eckert, Hellmut</creatorcontrib><creatorcontrib>Fehse, Constanze</creatorcontrib><creatorcontrib>Wright, Jon P.</creatorcontrib><creatorcontrib>Paul Attfield, J.</creatorcontrib><creatorcontrib>Johrendt, Dirk</creatorcontrib><creatorcontrib>Rayaprol, Sudhindra</creatorcontrib><creatorcontrib>Hoffmann, Rolf-Dieter</creatorcontrib><creatorcontrib>Pöttgen, Rainer</creatorcontrib><title>Structural, magnetic, and spectroscopic studies of YAgSn, TmAgSn, and LuAgSn</title><title>Journal of solid state chemistry</title><description>The rare earth–silver–stannides YAgSn, TmAgSn, and LuAgSn were synthesized from the elements by arc-melting and subsequent annealing. The three stannides were investigated by X-ray powder and single-crystal diffraction: NdPtSb type, P6 3 mc, Z = 2 , a = 468.3 ( 1 ) , c = 737.2 ( 2 ) pm, w R 2 = 0.0343 , 353 F 2 values, 12 variables for YAgSn, and ZrNiAl type, P6¯2 m, a = 726.4 ( 2 ) , c = 443.7 ( 1 ) pm , w R 2 = 0.0399 , 659 F 2 values, 15 variables for TmAgSn, and a = 723.8 ( 2 ) , c = 442.47 ( 9 ) pm , w R 2 = 0.0674 , 364 F 2 values, 15 variables for LuAgSn. Besides conventional laboratory X-ray data with monochromatized Mo radiation, the structures were also refined on the basis of synchrotron data with λ = 48.725 pm , in order to clarify the silver–tin ordering more precisely. YAgSn has puckered, two-dimensional [AgSn] networks with Ag–Sn distances of 278 pm, while the [AgSn] networks of TmAgSn and LuAgSn are three-dimensional with Ag–Sn distances of 279 and 284 pm for LuAgSn. Susceptibility measurements indicate Pauli paramagnetism for YAgSn and LuAgSn. TmAgSn is a Curie–Weiss paramagnet with an experimental magnetic moment of 7.2 μ B/Tm. No magnetic ordering is evident down to 2 K. The local environments of the tin sites in these compounds were characterized by 119Sn Mössbauer spectroscopy and solid-state NMR (in YAgSn and LuAgSn), confirming the tin site multiplicities proposed from the structure solutions and the absence of Sn/Ag site disordering. Mössbauer quadrupolar splittings were found in good agreement with calculated electric field gradients predicted quantum chemically by the WIEN2k code. Furthermore, an excellent correlation was found between experimental 119Sn nuclear magnetic shielding anisotropies (determined via MAS-NMR) and calculated electric field gradients. Electronic structure calculations predict metallic properties with strong Ag–Sn bonds and also significant Ag–Ag bonding in LuAgSn. Crystal Structure of YAgSn.</description><subject>Alloys</subject><subject>ANNEALING</subject><subject>Condensed matter: electronic structure, electrical, magnetic, and optical properties</subject><subject>Condensed matter: structure, mechanical and thermal properties</subject><subject>Exact sciences and technology</subject><subject>HEXAGONAL LATTICES</subject><subject>LUTETIUM COMPOUNDS</subject><subject>Magnetic resonances and relaxations in condensed matter, mössbauer effect</subject><subject>MAGNETIC SHIELDING</subject><subject>MAGNETIZATION</subject><subject>MATERIALS SCIENCE</subject><subject>MELTING</subject><subject>MOESSBAUER EFFECT</subject><subject>MONOCRYSTALS</subject><subject>Mossbauer effect; other γ-ray spectroscopy</subject><subject>Mössbauer effect; other γ-ray spectroscopy</subject><subject>Mössbauer spectroscopy</subject><subject>NUCLEAR MAGNETIC RESONANCE</subject><subject>PARAMAGNETISM</subject><subject>Physics</subject><subject>SILVER COMPOUNDS</subject><subject>Solid-state NMR</subject><subject>Stannides</subject><subject>Structure of solids and liquids; crystallography</subject><subject>Structure of specific crystalline solids</subject><subject>THULIUM COMPOUNDS</subject><subject>TIN COMPOUNDS</subject><subject>X-RAY DIFFRACTION</subject><subject>YTTRIUM COMPOUNDS</subject><issn>0022-4596</issn><issn>1095-726X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><recordid>eNp9kM1LxDAQxYMouK7-A54K4m1bJ-lHWvCyLH5BwcOuoKeQTtM1ZbctSSr439tQwZunmcPvzbz3CLmmEFGg2V0btdZixACyCJII4vyELCgUachZ9n5KFgCMhUlaZOfkwtoWgNI0Txak3DozohuNPKyCo9x3ymlcBbKrAzsodKa32A8aA-vGWisb9E3wsd5vu1WwO87Ts-Xo90ty1siDVVe_c0neHh92m-ewfH162azLEOM0d2EMnEtFm7pgFGvOkpRDksYUcloVuSogzbmqGFdQc1koKlnDK8U5VnFBUfJ4SW7mu711WljUTuEn9l03GRYMpgNx7ik2UziFsEY1YjD6KM23oCB8a6IVvjXhWxOQiKm1SXQ7iwZpUR4aIzvU9k-ZA-NF5rn7mVNTzi-tjLehOlS1Nt5F3ev_3vwAaEaBKA</recordid><startdate>20060801</startdate><enddate>20060801</enddate><creator>Peter Sebastian, C.</creator><creator>Eckert, Hellmut</creator><creator>Fehse, Constanze</creator><creator>Wright, Jon P.</creator><creator>Paul Attfield, J.</creator><creator>Johrendt, Dirk</creator><creator>Rayaprol, Sudhindra</creator><creator>Hoffmann, Rolf-Dieter</creator><creator>Pöttgen, Rainer</creator><general>Elsevier Inc</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>OTOTI</scope></search><sort><creationdate>20060801</creationdate><title>Structural, magnetic, and spectroscopic studies of YAgSn, TmAgSn, and LuAgSn</title><author>Peter Sebastian, C. ; Eckert, Hellmut ; Fehse, Constanze ; Wright, Jon P. ; Paul Attfield, J. ; Johrendt, Dirk ; Rayaprol, Sudhindra ; Hoffmann, Rolf-Dieter ; Pöttgen, Rainer</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c358t-3077ae1fd921cd7245704531081b98e90587eb27e0d7a9e1a2f7be77cb391ca73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Alloys</topic><topic>ANNEALING</topic><topic>Condensed matter: electronic structure, electrical, magnetic, and optical properties</topic><topic>Condensed matter: structure, mechanical and thermal properties</topic><topic>Exact sciences and technology</topic><topic>HEXAGONAL LATTICES</topic><topic>LUTETIUM COMPOUNDS</topic><topic>Magnetic resonances and relaxations in condensed matter, mössbauer effect</topic><topic>MAGNETIC SHIELDING</topic><topic>MAGNETIZATION</topic><topic>MATERIALS SCIENCE</topic><topic>MELTING</topic><topic>MOESSBAUER EFFECT</topic><topic>MONOCRYSTALS</topic><topic>Mossbauer effect; other γ-ray spectroscopy</topic><topic>Mössbauer effect; other γ-ray spectroscopy</topic><topic>Mössbauer spectroscopy</topic><topic>NUCLEAR MAGNETIC RESONANCE</topic><topic>PARAMAGNETISM</topic><topic>Physics</topic><topic>SILVER COMPOUNDS</topic><topic>Solid-state NMR</topic><topic>Stannides</topic><topic>Structure of solids and liquids; crystallography</topic><topic>Structure of specific crystalline solids</topic><topic>THULIUM COMPOUNDS</topic><topic>TIN COMPOUNDS</topic><topic>X-RAY DIFFRACTION</topic><topic>YTTRIUM COMPOUNDS</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Peter Sebastian, C.</creatorcontrib><creatorcontrib>Eckert, Hellmut</creatorcontrib><creatorcontrib>Fehse, Constanze</creatorcontrib><creatorcontrib>Wright, Jon P.</creatorcontrib><creatorcontrib>Paul Attfield, J.</creatorcontrib><creatorcontrib>Johrendt, Dirk</creatorcontrib><creatorcontrib>Rayaprol, Sudhindra</creatorcontrib><creatorcontrib>Hoffmann, Rolf-Dieter</creatorcontrib><creatorcontrib>Pöttgen, Rainer</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>OSTI.GOV</collection><jtitle>Journal of solid state chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Peter Sebastian, C.</au><au>Eckert, Hellmut</au><au>Fehse, Constanze</au><au>Wright, Jon P.</au><au>Paul Attfield, J.</au><au>Johrendt, Dirk</au><au>Rayaprol, Sudhindra</au><au>Hoffmann, Rolf-Dieter</au><au>Pöttgen, Rainer</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Structural, magnetic, and spectroscopic studies of YAgSn, TmAgSn, and LuAgSn</atitle><jtitle>Journal of solid state chemistry</jtitle><date>2006-08-01</date><risdate>2006</risdate><volume>179</volume><issue>8</issue><spage>2376</spage><epage>2385</epage><pages>2376-2385</pages><issn>0022-4596</issn><eissn>1095-726X</eissn><coden>JSSCBI</coden><abstract>The rare earth–silver–stannides YAgSn, TmAgSn, and LuAgSn were synthesized from the elements by arc-melting and subsequent annealing. The three stannides were investigated by X-ray powder and single-crystal diffraction: NdPtSb type, P6 3 mc, Z = 2 , a = 468.3 ( 1 ) , c = 737.2 ( 2 ) pm, w R 2 = 0.0343 , 353 F 2 values, 12 variables for YAgSn, and ZrNiAl type, P6¯2 m, a = 726.4 ( 2 ) , c = 443.7 ( 1 ) pm , w R 2 = 0.0399 , 659 F 2 values, 15 variables for TmAgSn, and a = 723.8 ( 2 ) , c = 442.47 ( 9 ) pm , w R 2 = 0.0674 , 364 F 2 values, 15 variables for LuAgSn. Besides conventional laboratory X-ray data with monochromatized Mo radiation, the structures were also refined on the basis of synchrotron data with λ = 48.725 pm , in order to clarify the silver–tin ordering more precisely. YAgSn has puckered, two-dimensional [AgSn] networks with Ag–Sn distances of 278 pm, while the [AgSn] networks of TmAgSn and LuAgSn are three-dimensional with Ag–Sn distances of 279 and 284 pm for LuAgSn. Susceptibility measurements indicate Pauli paramagnetism for YAgSn and LuAgSn. TmAgSn is a Curie–Weiss paramagnet with an experimental magnetic moment of 7.2 μ B/Tm. No magnetic ordering is evident down to 2 K. The local environments of the tin sites in these compounds were characterized by 119Sn Mössbauer spectroscopy and solid-state NMR (in YAgSn and LuAgSn), confirming the tin site multiplicities proposed from the structure solutions and the absence of Sn/Ag site disordering. Mössbauer quadrupolar splittings were found in good agreement with calculated electric field gradients predicted quantum chemically by the WIEN2k code. Furthermore, an excellent correlation was found between experimental 119Sn nuclear magnetic shielding anisotropies (determined via MAS-NMR) and calculated electric field gradients. Electronic structure calculations predict metallic properties with strong Ag–Sn bonds and also significant Ag–Ag bonding in LuAgSn. Crystal Structure of YAgSn.</abstract><cop>San Diego, CA</cop><pub>Elsevier Inc</pub><doi>10.1016/j.jssc.2006.04.038</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0022-4596
ispartof Journal of solid state chemistry, 2006-08, Vol.179 (8), p.2376-2385
issn 0022-4596
1095-726X
language eng
recordid cdi_osti_scitechconnect_20905387
source ScienceDirect Freedom Collection
subjects Alloys
ANNEALING
Condensed matter: electronic structure, electrical, magnetic, and optical properties
Condensed matter: structure, mechanical and thermal properties
Exact sciences and technology
HEXAGONAL LATTICES
LUTETIUM COMPOUNDS
Magnetic resonances and relaxations in condensed matter, mössbauer effect
MAGNETIC SHIELDING
MAGNETIZATION
MATERIALS SCIENCE
MELTING
MOESSBAUER EFFECT
MONOCRYSTALS
Mossbauer effect
other γ-ray spectroscopy
Mössbauer effect
other γ-ray spectroscopy
Mössbauer spectroscopy
NUCLEAR MAGNETIC RESONANCE
PARAMAGNETISM
Physics
SILVER COMPOUNDS
Solid-state NMR
Stannides
Structure of solids and liquids
crystallography
Structure of specific crystalline solids
THULIUM COMPOUNDS
TIN COMPOUNDS
X-RAY DIFFRACTION
YTTRIUM COMPOUNDS
title Structural, magnetic, and spectroscopic studies of YAgSn, TmAgSn, and LuAgSn
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-09-22T16%3A28%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Structural,%20magnetic,%20and%20spectroscopic%20studies%20of%20YAgSn,%20TmAgSn,%20and%20LuAgSn&rft.jtitle=Journal%20of%20solid%20state%20chemistry&rft.au=Peter%20Sebastian,%20C.&rft.date=2006-08-01&rft.volume=179&rft.issue=8&rft.spage=2376&rft.epage=2385&rft.pages=2376-2385&rft.issn=0022-4596&rft.eissn=1095-726X&rft.coden=JSSCBI&rft_id=info:doi/10.1016/j.jssc.2006.04.038&rft_dat=%3Celsevier_osti_%3ES0022459606002283%3C/elsevier_osti_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c358t-3077ae1fd921cd7245704531081b98e90587eb27e0d7a9e1a2f7be77cb391ca73%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true