Loading…

Metric geometry tools for automatic structure phase map generation

Extracting a phase map that provides a hierarchical summary of high-throughput experiments is a long-standing bottleneck for the modern goal of achieving automation and acceleration in material discovery. A phase map that underpins the inherent properties of materials is typically denoted using a co...

Full description

Saved in:
Bibliographic Details
Published in:Digital discovery 2023-10, Vol.2 (5), p.1471-1483
Main Authors: Vaddi, Kiran, Li, Karen, Pozzo, Lilo D
Format: Article
Language:English
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c316t-a10b925aedd14c2207bdf70d97d5be7cad0cffdf6292b72196f5e1194b032d303
cites cdi_FETCH-LOGICAL-c316t-a10b925aedd14c2207bdf70d97d5be7cad0cffdf6292b72196f5e1194b032d303
container_end_page 1483
container_issue 5
container_start_page 1471
container_title Digital discovery
container_volume 2
creator Vaddi, Kiran
Li, Karen
Pozzo, Lilo D
description Extracting a phase map that provides a hierarchical summary of high-throughput experiments is a long-standing bottleneck for the modern goal of achieving automation and acceleration in material discovery. A phase map that underpins the inherent properties of materials is typically denoted using a composition-structure map but can be extended to other relevant parameters such as synthesis. This paper describes a computational statistical tool to efficiently obtain a phase map from multi-scale experimental measurement profiles obtained from high-throughput measurements. We motivate the construction of a phase map as the problem of learning the underlying metric geometry defined by a set of templates in infinite-dimensional function spaces. We provide a statistical analysis tool to obtain a phase map as an asymptotic of the diffusion of resulting distance functions on the composition. Using examples from small-angle X-ray scattering experiments of polymer blend systems, we show that learned metric geometry can efficiently differentiate ordered phase regions with shifted, missing, and broad Bragg peaks along with features related to non-Bragg behavior of soft-matter systems. The metric geometry allows us to define a shape distance between scattering profiles invariant to phase-independent transformations thus valuable for obtaining a phase map. We also apply the methodology to benchmark experimental diffraction data to showcase potential utility and broad applicability. We present an automated method to extract phase maps from experimental data that is of the functional form ( e.g. : spectroscopy, scattering, diffraction) using the notion of shape distance between two curves represented as one dimensional functions.
doi_str_mv 10.1039/d3dd00105a
format article
fullrecord <record><control><sourceid>rsc_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1998019</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>d3dd00105a</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-a10b925aedd14c2207bdf70d97d5be7cad0cffdf6292b72196f5e1194b032d303</originalsourceid><addsrcrecordid>eNpNkDtPwzAUhS0EElXpwo4UMSIF7rWbuB5LWx5SEQtIbJbjBw1q4sh2hv57AkHAdI90vnOHj5BzhGsEJm4MMwYAoVBHZEJLVuQgFm_H__IpmcX4AQCUc0RWTsjtk02h1tm79c2QDlnyfh8z50Om-uQblYYyptDr1AebdTsVbdaobhi0Ngytb8_IiVP7aGc_d0pe7zYvq4d8-3z_uFpuc82wTLlCqAQtlDUG55pS4JVxHIzgpqgs18qAds64kgpacYqidIVFFPMKGDUM2JRcjn99TLWMuk5W77RvW6uTRCEWgGKArkZIBx9jsE52oW5UOEgE-WVJrtl6_W1pOcAXIxyi_uX-LLJP-U5kWA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Metric geometry tools for automatic structure phase map generation</title><source>Alma/SFX Local Collection</source><creator>Vaddi, Kiran ; Li, Karen ; Pozzo, Lilo D</creator><creatorcontrib>Vaddi, Kiran ; Li, Karen ; Pozzo, Lilo D</creatorcontrib><description>Extracting a phase map that provides a hierarchical summary of high-throughput experiments is a long-standing bottleneck for the modern goal of achieving automation and acceleration in material discovery. A phase map that underpins the inherent properties of materials is typically denoted using a composition-structure map but can be extended to other relevant parameters such as synthesis. This paper describes a computational statistical tool to efficiently obtain a phase map from multi-scale experimental measurement profiles obtained from high-throughput measurements. We motivate the construction of a phase map as the problem of learning the underlying metric geometry defined by a set of templates in infinite-dimensional function spaces. We provide a statistical analysis tool to obtain a phase map as an asymptotic of the diffusion of resulting distance functions on the composition. Using examples from small-angle X-ray scattering experiments of polymer blend systems, we show that learned metric geometry can efficiently differentiate ordered phase regions with shifted, missing, and broad Bragg peaks along with features related to non-Bragg behavior of soft-matter systems. The metric geometry allows us to define a shape distance between scattering profiles invariant to phase-independent transformations thus valuable for obtaining a phase map. We also apply the methodology to benchmark experimental diffraction data to showcase potential utility and broad applicability. We present an automated method to extract phase maps from experimental data that is of the functional form ( e.g. : spectroscopy, scattering, diffraction) using the notion of shape distance between two curves represented as one dimensional functions.</description><identifier>ISSN: 2635-098X</identifier><identifier>EISSN: 2635-098X</identifier><identifier>DOI: 10.1039/d3dd00105a</identifier><language>eng</language><publisher>United Kingdom: Royal Society of Chemistry (RSC)</publisher><ispartof>Digital discovery, 2023-10, Vol.2 (5), p.1471-1483</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-a10b925aedd14c2207bdf70d97d5be7cad0cffdf6292b72196f5e1194b032d303</citedby><cites>FETCH-LOGICAL-c316t-a10b925aedd14c2207bdf70d97d5be7cad0cffdf6292b72196f5e1194b032d303</cites><orcidid>0000-0001-7104-9061 ; 0000-0003-2440-2656 ; 0000-0003-2998-769X ; 000000032998769X ; 0000000171049061 ; 0000000324402656</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,315,786,790,891,27957,27958</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/1998019$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Vaddi, Kiran</creatorcontrib><creatorcontrib>Li, Karen</creatorcontrib><creatorcontrib>Pozzo, Lilo D</creatorcontrib><title>Metric geometry tools for automatic structure phase map generation</title><title>Digital discovery</title><description>Extracting a phase map that provides a hierarchical summary of high-throughput experiments is a long-standing bottleneck for the modern goal of achieving automation and acceleration in material discovery. A phase map that underpins the inherent properties of materials is typically denoted using a composition-structure map but can be extended to other relevant parameters such as synthesis. This paper describes a computational statistical tool to efficiently obtain a phase map from multi-scale experimental measurement profiles obtained from high-throughput measurements. We motivate the construction of a phase map as the problem of learning the underlying metric geometry defined by a set of templates in infinite-dimensional function spaces. We provide a statistical analysis tool to obtain a phase map as an asymptotic of the diffusion of resulting distance functions on the composition. Using examples from small-angle X-ray scattering experiments of polymer blend systems, we show that learned metric geometry can efficiently differentiate ordered phase regions with shifted, missing, and broad Bragg peaks along with features related to non-Bragg behavior of soft-matter systems. The metric geometry allows us to define a shape distance between scattering profiles invariant to phase-independent transformations thus valuable for obtaining a phase map. We also apply the methodology to benchmark experimental diffraction data to showcase potential utility and broad applicability. We present an automated method to extract phase maps from experimental data that is of the functional form ( e.g. : spectroscopy, scattering, diffraction) using the notion of shape distance between two curves represented as one dimensional functions.</description><issn>2635-098X</issn><issn>2635-098X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNpNkDtPwzAUhS0EElXpwo4UMSIF7rWbuB5LWx5SEQtIbJbjBw1q4sh2hv57AkHAdI90vnOHj5BzhGsEJm4MMwYAoVBHZEJLVuQgFm_H__IpmcX4AQCUc0RWTsjtk02h1tm79c2QDlnyfh8z50Om-uQblYYyptDr1AebdTsVbdaobhi0Ngytb8_IiVP7aGc_d0pe7zYvq4d8-3z_uFpuc82wTLlCqAQtlDUG55pS4JVxHIzgpqgs18qAds64kgpacYqidIVFFPMKGDUM2JRcjn99TLWMuk5W77RvW6uTRCEWgGKArkZIBx9jsE52oW5UOEgE-WVJrtl6_W1pOcAXIxyi_uX-LLJP-U5kWA</recordid><startdate>20231009</startdate><enddate>20231009</enddate><creator>Vaddi, Kiran</creator><creator>Li, Karen</creator><creator>Pozzo, Lilo D</creator><general>Royal Society of Chemistry (RSC)</general><scope>AAYXX</scope><scope>CITATION</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0001-7104-9061</orcidid><orcidid>https://orcid.org/0000-0003-2440-2656</orcidid><orcidid>https://orcid.org/0000-0003-2998-769X</orcidid><orcidid>https://orcid.org/000000032998769X</orcidid><orcidid>https://orcid.org/0000000171049061</orcidid><orcidid>https://orcid.org/0000000324402656</orcidid></search><sort><creationdate>20231009</creationdate><title>Metric geometry tools for automatic structure phase map generation</title><author>Vaddi, Kiran ; Li, Karen ; Pozzo, Lilo D</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-a10b925aedd14c2207bdf70d97d5be7cad0cffdf6292b72196f5e1194b032d303</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Vaddi, Kiran</creatorcontrib><creatorcontrib>Li, Karen</creatorcontrib><creatorcontrib>Pozzo, Lilo D</creatorcontrib><collection>CrossRef</collection><collection>OSTI.GOV</collection><jtitle>Digital discovery</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Vaddi, Kiran</au><au>Li, Karen</au><au>Pozzo, Lilo D</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Metric geometry tools for automatic structure phase map generation</atitle><jtitle>Digital discovery</jtitle><date>2023-10-09</date><risdate>2023</risdate><volume>2</volume><issue>5</issue><spage>1471</spage><epage>1483</epage><pages>1471-1483</pages><issn>2635-098X</issn><eissn>2635-098X</eissn><notes>https://doi.org/10.1039/d3dd00105a</notes><notes>Electronic supplementary information (ESI) available. See DOI</notes><notes>USDOE</notes><abstract>Extracting a phase map that provides a hierarchical summary of high-throughput experiments is a long-standing bottleneck for the modern goal of achieving automation and acceleration in material discovery. A phase map that underpins the inherent properties of materials is typically denoted using a composition-structure map but can be extended to other relevant parameters such as synthesis. This paper describes a computational statistical tool to efficiently obtain a phase map from multi-scale experimental measurement profiles obtained from high-throughput measurements. We motivate the construction of a phase map as the problem of learning the underlying metric geometry defined by a set of templates in infinite-dimensional function spaces. We provide a statistical analysis tool to obtain a phase map as an asymptotic of the diffusion of resulting distance functions on the composition. Using examples from small-angle X-ray scattering experiments of polymer blend systems, we show that learned metric geometry can efficiently differentiate ordered phase regions with shifted, missing, and broad Bragg peaks along with features related to non-Bragg behavior of soft-matter systems. The metric geometry allows us to define a shape distance between scattering profiles invariant to phase-independent transformations thus valuable for obtaining a phase map. We also apply the methodology to benchmark experimental diffraction data to showcase potential utility and broad applicability. We present an automated method to extract phase maps from experimental data that is of the functional form ( e.g. : spectroscopy, scattering, diffraction) using the notion of shape distance between two curves represented as one dimensional functions.</abstract><cop>United Kingdom</cop><pub>Royal Society of Chemistry (RSC)</pub><doi>10.1039/d3dd00105a</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0001-7104-9061</orcidid><orcidid>https://orcid.org/0000-0003-2440-2656</orcidid><orcidid>https://orcid.org/0000-0003-2998-769X</orcidid><orcidid>https://orcid.org/000000032998769X</orcidid><orcidid>https://orcid.org/0000000171049061</orcidid><orcidid>https://orcid.org/0000000324402656</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2635-098X
ispartof Digital discovery, 2023-10, Vol.2 (5), p.1471-1483
issn 2635-098X
2635-098X
language eng
recordid cdi_osti_scitechconnect_1998019
source Alma/SFX Local Collection
title Metric geometry tools for automatic structure phase map generation
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-09-22T04%3A53%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-rsc_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Metric%20geometry%20tools%20for%20automatic%20structure%20phase%20map%20generation&rft.jtitle=Digital%20discovery&rft.au=Vaddi,%20Kiran&rft.date=2023-10-09&rft.volume=2&rft.issue=5&rft.spage=1471&rft.epage=1483&rft.pages=1471-1483&rft.issn=2635-098X&rft.eissn=2635-098X&rft_id=info:doi/10.1039/d3dd00105a&rft_dat=%3Crsc_osti_%3Ed3dd00105a%3C/rsc_osti_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c316t-a10b925aedd14c2207bdf70d97d5be7cad0cffdf6292b72196f5e1194b032d303%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true