Loading…

Thin‐Film Ferroelectrics

Over the last 30 years, the study of ferroelectric oxides has been revolutionized by the implementation of epitaxial‐thin‐film‐based studies, which have driven many advances in the understanding of ferroelectric physics and the realization of novel polar structures and functionalities. New questions...

Full description

Saved in:
Bibliographic Details
Published in:Advanced materials (Weinheim) 2022-07, Vol.34 (30), p.e2108841-n/a
Main Authors: Fernandez, Abel, Acharya, Megha, Lee, Han‐Gyeol, Schimpf, Jesse, Jiang, Yizhe, Lou, Djamila, Tian, Zishen, Martin, Lane W.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c5061-ad8a89708db87aa3fbff59d64d49ff6ba28f8b2fa8039fb2ea1e5024baea058e3
cites cdi_FETCH-LOGICAL-c5061-ad8a89708db87aa3fbff59d64d49ff6ba28f8b2fa8039fb2ea1e5024baea058e3
container_end_page n/a
container_issue 30
container_start_page e2108841
container_title Advanced materials (Weinheim)
container_volume 34
creator Fernandez, Abel
Acharya, Megha
Lee, Han‐Gyeol
Schimpf, Jesse
Jiang, Yizhe
Lou, Djamila
Tian, Zishen
Martin, Lane W.
description Over the last 30 years, the study of ferroelectric oxides has been revolutionized by the implementation of epitaxial‐thin‐film‐based studies, which have driven many advances in the understanding of ferroelectric physics and the realization of novel polar structures and functionalities. New questions have motivated the development of advanced synthesis, characterization, and simulations of epitaxial thin films and, in turn, have provided new insights and applications across the micro‐, meso‐, and macroscopic length scales. This review traces the evolution of ferroelectric thin‐film research through the early days developing understanding of the roles of size and strain on ferroelectrics to the present day, where such understanding is used to create complex hierarchical domain structures, novel polar topologies, and controlled chemical and defect profiles. The extension of epitaxial techniques, coupled with advances in high‐throughput simulations, now stands to accelerate the discovery and study of new ferroelectric materials. Coming hand‐in‐hand with these new materials is new understanding and control of ferroelectric functionalities. Today, researchers are actively working to apply these lessons in a number of applications, including novel memory and logic architectures, as well as a host of energy conversion devices. Over the last 30 years, studies of epitaxial thin‐film ferroelectrics have driven advances in the synthesis, characterization, and understanding of ferroelectric polarization, realizing new ferroelectric order, ferroelectric materials, and applications. A broad look at the field of thin‐film ferroelectrics is provided, connecting early questions motivating researchers to open questions for the coming decades.
doi_str_mv 10.1002/adma.202108841
format article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1871859</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2694783178</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5061-ad8a89708db87aa3fbff59d64d49ff6ba28f8b2fa8039fb2ea1e5024baea058e3</originalsourceid><addsrcrecordid>eNqF0L1OwzAUBWALgWgprAwMCMHCknLt2Ik9VoUCUhFLmS3HsdVU-QE7EerGI_CMPAmuUorEgqwrL5-Prg9CpxjGGIDcqLxSYwIEA-cU76EhZgRHFATbR0MQMYtEQvkAHXm_AgCRQHKIBjELJxZsiM4Wy6L--vicFWV1MTPONaY0unWF9sfowKrSm5PtPUIvs7vF9CGaP98_TifzSDNIcKRyrrhIgecZT5WKbWYtE3lCcyqsTTJFuOUZsYpDLGxGjMKGAaGZMgoYN_EIXfa5jW8L6XXRGr3UTV2HPSTmKeZMBHTdo1fXvHXGt7IqvDZlqWrTdF6ShDKacAE40Ks_dNV0rg5fCErQlMc4zAiNe6Vd470zVr66olJuLTHITbVyU63cVRsenG9ju6wy-Y7_dBmA6MF7UZr1P3Fycvs0-Q3_BvLXg9M</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2694783178</pqid></control><display><type>article</type><title>Thin‐Film Ferroelectrics</title><source>Wiley-Blackwell Journals</source><creator>Fernandez, Abel ; Acharya, Megha ; Lee, Han‐Gyeol ; Schimpf, Jesse ; Jiang, Yizhe ; Lou, Djamila ; Tian, Zishen ; Martin, Lane W.</creator><creatorcontrib>Fernandez, Abel ; Acharya, Megha ; Lee, Han‐Gyeol ; Schimpf, Jesse ; Jiang, Yizhe ; Lou, Djamila ; Tian, Zishen ; Martin, Lane W.</creatorcontrib><description>Over the last 30 years, the study of ferroelectric oxides has been revolutionized by the implementation of epitaxial‐thin‐film‐based studies, which have driven many advances in the understanding of ferroelectric physics and the realization of novel polar structures and functionalities. New questions have motivated the development of advanced synthesis, characterization, and simulations of epitaxial thin films and, in turn, have provided new insights and applications across the micro‐, meso‐, and macroscopic length scales. This review traces the evolution of ferroelectric thin‐film research through the early days developing understanding of the roles of size and strain on ferroelectrics to the present day, where such understanding is used to create complex hierarchical domain structures, novel polar topologies, and controlled chemical and defect profiles. The extension of epitaxial techniques, coupled with advances in high‐throughput simulations, now stands to accelerate the discovery and study of new ferroelectric materials. Coming hand‐in‐hand with these new materials is new understanding and control of ferroelectric functionalities. Today, researchers are actively working to apply these lessons in a number of applications, including novel memory and logic architectures, as well as a host of energy conversion devices. Over the last 30 years, studies of epitaxial thin‐film ferroelectrics have driven advances in the synthesis, characterization, and understanding of ferroelectric polarization, realizing new ferroelectric order, ferroelectric materials, and applications. A broad look at the field of thin‐film ferroelectrics is provided, connecting early questions motivating researchers to open questions for the coming decades.</description><identifier>ISSN: 0935-9648</identifier><identifier>EISSN: 1521-4095</identifier><identifier>DOI: 10.1002/adma.202108841</identifier><identifier>PMID: 35353395</identifier><language>eng</language><publisher>Germany: Wiley Subscription Services, Inc</publisher><subject>Energy conversion ; Epitaxy ; Ferroelectric materials ; Ferroelectricity ; Ferroelectrics ; piezoelectrics ; pyroelectrics ; Structural hierarchy ; Thin films ; Topology</subject><ispartof>Advanced materials (Weinheim), 2022-07, Vol.34 (30), p.e2108841-n/a</ispartof><rights>2022 Wiley‐VCH GmbH</rights><rights>2022 Wiley-VCH GmbH.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5061-ad8a89708db87aa3fbff59d64d49ff6ba28f8b2fa8039fb2ea1e5024baea058e3</citedby><cites>FETCH-LOGICAL-c5061-ad8a89708db87aa3fbff59d64d49ff6ba28f8b2fa8039fb2ea1e5024baea058e3</cites><orcidid>0000-0001-9618-1771 ; 0000-0002-3628-9104 ; 0000-0003-1889-2513 ; 0000000318892513 ; 0000000196181771 ; 0000000236289104</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fadma.202108841$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fadma.202108841$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>230,315,786,790,891,27957,27958,50923,51032</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35353395$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/1871859$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Fernandez, Abel</creatorcontrib><creatorcontrib>Acharya, Megha</creatorcontrib><creatorcontrib>Lee, Han‐Gyeol</creatorcontrib><creatorcontrib>Schimpf, Jesse</creatorcontrib><creatorcontrib>Jiang, Yizhe</creatorcontrib><creatorcontrib>Lou, Djamila</creatorcontrib><creatorcontrib>Tian, Zishen</creatorcontrib><creatorcontrib>Martin, Lane W.</creatorcontrib><title>Thin‐Film Ferroelectrics</title><title>Advanced materials (Weinheim)</title><addtitle>Adv Mater</addtitle><description>Over the last 30 years, the study of ferroelectric oxides has been revolutionized by the implementation of epitaxial‐thin‐film‐based studies, which have driven many advances in the understanding of ferroelectric physics and the realization of novel polar structures and functionalities. New questions have motivated the development of advanced synthesis, characterization, and simulations of epitaxial thin films and, in turn, have provided new insights and applications across the micro‐, meso‐, and macroscopic length scales. This review traces the evolution of ferroelectric thin‐film research through the early days developing understanding of the roles of size and strain on ferroelectrics to the present day, where such understanding is used to create complex hierarchical domain structures, novel polar topologies, and controlled chemical and defect profiles. The extension of epitaxial techniques, coupled with advances in high‐throughput simulations, now stands to accelerate the discovery and study of new ferroelectric materials. Coming hand‐in‐hand with these new materials is new understanding and control of ferroelectric functionalities. Today, researchers are actively working to apply these lessons in a number of applications, including novel memory and logic architectures, as well as a host of energy conversion devices. Over the last 30 years, studies of epitaxial thin‐film ferroelectrics have driven advances in the synthesis, characterization, and understanding of ferroelectric polarization, realizing new ferroelectric order, ferroelectric materials, and applications. A broad look at the field of thin‐film ferroelectrics is provided, connecting early questions motivating researchers to open questions for the coming decades.</description><subject>Energy conversion</subject><subject>Epitaxy</subject><subject>Ferroelectric materials</subject><subject>Ferroelectricity</subject><subject>Ferroelectrics</subject><subject>piezoelectrics</subject><subject>pyroelectrics</subject><subject>Structural hierarchy</subject><subject>Thin films</subject><subject>Topology</subject><issn>0935-9648</issn><issn>1521-4095</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNqF0L1OwzAUBWALgWgprAwMCMHCknLt2Ik9VoUCUhFLmS3HsdVU-QE7EerGI_CMPAmuUorEgqwrL5-Prg9CpxjGGIDcqLxSYwIEA-cU76EhZgRHFATbR0MQMYtEQvkAHXm_AgCRQHKIBjELJxZsiM4Wy6L--vicFWV1MTPONaY0unWF9sfowKrSm5PtPUIvs7vF9CGaP98_TifzSDNIcKRyrrhIgecZT5WKbWYtE3lCcyqsTTJFuOUZsYpDLGxGjMKGAaGZMgoYN_EIXfa5jW8L6XXRGr3UTV2HPSTmKeZMBHTdo1fXvHXGt7IqvDZlqWrTdF6ShDKacAE40Ks_dNV0rg5fCErQlMc4zAiNe6Vd470zVr66olJuLTHITbVyU63cVRsenG9ju6wy-Y7_dBmA6MF7UZr1P3Fycvs0-Q3_BvLXg9M</recordid><startdate>20220701</startdate><enddate>20220701</enddate><creator>Fernandez, Abel</creator><creator>Acharya, Megha</creator><creator>Lee, Han‐Gyeol</creator><creator>Schimpf, Jesse</creator><creator>Jiang, Yizhe</creator><creator>Lou, Djamila</creator><creator>Tian, Zishen</creator><creator>Martin, Lane W.</creator><general>Wiley Subscription Services, Inc</general><general>Wiley Blackwell (John Wiley &amp; Sons)</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>7X8</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0001-9618-1771</orcidid><orcidid>https://orcid.org/0000-0002-3628-9104</orcidid><orcidid>https://orcid.org/0000-0003-1889-2513</orcidid><orcidid>https://orcid.org/0000000318892513</orcidid><orcidid>https://orcid.org/0000000196181771</orcidid><orcidid>https://orcid.org/0000000236289104</orcidid></search><sort><creationdate>20220701</creationdate><title>Thin‐Film Ferroelectrics</title><author>Fernandez, Abel ; Acharya, Megha ; Lee, Han‐Gyeol ; Schimpf, Jesse ; Jiang, Yizhe ; Lou, Djamila ; Tian, Zishen ; Martin, Lane W.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5061-ad8a89708db87aa3fbff59d64d49ff6ba28f8b2fa8039fb2ea1e5024baea058e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Energy conversion</topic><topic>Epitaxy</topic><topic>Ferroelectric materials</topic><topic>Ferroelectricity</topic><topic>Ferroelectrics</topic><topic>piezoelectrics</topic><topic>pyroelectrics</topic><topic>Structural hierarchy</topic><topic>Thin films</topic><topic>Topology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fernandez, Abel</creatorcontrib><creatorcontrib>Acharya, Megha</creatorcontrib><creatorcontrib>Lee, Han‐Gyeol</creatorcontrib><creatorcontrib>Schimpf, Jesse</creatorcontrib><creatorcontrib>Jiang, Yizhe</creatorcontrib><creatorcontrib>Lou, Djamila</creatorcontrib><creatorcontrib>Tian, Zishen</creatorcontrib><creatorcontrib>Martin, Lane W.</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV</collection><jtitle>Advanced materials (Weinheim)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fernandez, Abel</au><au>Acharya, Megha</au><au>Lee, Han‐Gyeol</au><au>Schimpf, Jesse</au><au>Jiang, Yizhe</au><au>Lou, Djamila</au><au>Tian, Zishen</au><au>Martin, Lane W.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Thin‐Film Ferroelectrics</atitle><jtitle>Advanced materials (Weinheim)</jtitle><addtitle>Adv Mater</addtitle><date>2022-07-01</date><risdate>2022</risdate><volume>34</volume><issue>30</issue><spage>e2108841</spage><epage>n/a</epage><pages>e2108841-n/a</pages><issn>0935-9648</issn><eissn>1521-4095</eissn><notes>ObjectType-Article-2</notes><notes>SourceType-Scholarly Journals-1</notes><notes>ObjectType-Feature-3</notes><notes>content type line 23</notes><notes>ObjectType-Review-1</notes><notes>USDOE</notes><abstract>Over the last 30 years, the study of ferroelectric oxides has been revolutionized by the implementation of epitaxial‐thin‐film‐based studies, which have driven many advances in the understanding of ferroelectric physics and the realization of novel polar structures and functionalities. New questions have motivated the development of advanced synthesis, characterization, and simulations of epitaxial thin films and, in turn, have provided new insights and applications across the micro‐, meso‐, and macroscopic length scales. This review traces the evolution of ferroelectric thin‐film research through the early days developing understanding of the roles of size and strain on ferroelectrics to the present day, where such understanding is used to create complex hierarchical domain structures, novel polar topologies, and controlled chemical and defect profiles. The extension of epitaxial techniques, coupled with advances in high‐throughput simulations, now stands to accelerate the discovery and study of new ferroelectric materials. Coming hand‐in‐hand with these new materials is new understanding and control of ferroelectric functionalities. Today, researchers are actively working to apply these lessons in a number of applications, including novel memory and logic architectures, as well as a host of energy conversion devices. Over the last 30 years, studies of epitaxial thin‐film ferroelectrics have driven advances in the synthesis, characterization, and understanding of ferroelectric polarization, realizing new ferroelectric order, ferroelectric materials, and applications. A broad look at the field of thin‐film ferroelectrics is provided, connecting early questions motivating researchers to open questions for the coming decades.</abstract><cop>Germany</cop><pub>Wiley Subscription Services, Inc</pub><pmid>35353395</pmid><doi>10.1002/adma.202108841</doi><tpages>48</tpages><orcidid>https://orcid.org/0000-0001-9618-1771</orcidid><orcidid>https://orcid.org/0000-0002-3628-9104</orcidid><orcidid>https://orcid.org/0000-0003-1889-2513</orcidid><orcidid>https://orcid.org/0000000318892513</orcidid><orcidid>https://orcid.org/0000000196181771</orcidid><orcidid>https://orcid.org/0000000236289104</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0935-9648
ispartof Advanced materials (Weinheim), 2022-07, Vol.34 (30), p.e2108841-n/a
issn 0935-9648
1521-4095
language eng
recordid cdi_osti_scitechconnect_1871859
source Wiley-Blackwell Journals
subjects Energy conversion
Epitaxy
Ferroelectric materials
Ferroelectricity
Ferroelectrics
piezoelectrics
pyroelectrics
Structural hierarchy
Thin films
Topology
title Thin‐Film Ferroelectrics
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-09-24T17%3A20%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Thin%E2%80%90Film%20Ferroelectrics&rft.jtitle=Advanced%20materials%20(Weinheim)&rft.au=Fernandez,%20Abel&rft.date=2022-07-01&rft.volume=34&rft.issue=30&rft.spage=e2108841&rft.epage=n/a&rft.pages=e2108841-n/a&rft.issn=0935-9648&rft.eissn=1521-4095&rft_id=info:doi/10.1002/adma.202108841&rft_dat=%3Cproquest_osti_%3E2694783178%3C/proquest_osti_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c5061-ad8a89708db87aa3fbff59d64d49ff6ba28f8b2fa8039fb2ea1e5024baea058e3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2694783178&rft_id=info:pmid/35353395&rfr_iscdi=true