Loading…

Quantifying Nanoparticle Ordering Induced by Polymer Crystallization

It has recently been established that polymer crystallization can preferentially place nanoparticles (NPs) into the amorphous domains of a lamellar semicrystalline morphology. The phenomenology of this process is clear: when the time for NP diffusion is shorter than the crystal growth time, then the...

Full description

Saved in:
Bibliographic Details
Published in:ACS nano 2021-09, Vol.15 (9), p.14430-14443
Main Authors: Krauskopf, Alejandro A, Jimenez, Andrew M, Altorbaq, Abdullah S, Müller, Alejandro J, Kumar, Sanat K
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-a337t-e650c1e23ec610dc27c524d699d49235c2fe19570282b7859b69f31187ce0783
cites cdi_FETCH-LOGICAL-a337t-e650c1e23ec610dc27c524d699d49235c2fe19570282b7859b69f31187ce0783
container_end_page 14443
container_issue 9
container_start_page 14430
container_title ACS nano
container_volume 15
creator Krauskopf, Alejandro A
Jimenez, Andrew M
Altorbaq, Abdullah S
Müller, Alejandro J
Kumar, Sanat K
description It has recently been established that polymer crystallization can preferentially place nanoparticles (NPs) into the amorphous domains of a lamellar semicrystalline morphology. The phenomenology of this process is clear: when the time for NP diffusion is shorter than the crystal growth time, then the NPs are rejected by the growing crystals and placed in the amorphous domains. However, since there is no quantitative characterization of this ordered NP state, we develop a correlation function analysis for small-angle X-ray scattering data, inspired by classical methods used for enunciating the local morphology of lamellar semicrystalline polymers. We show that when the spherulitic growth rate is slower than NP diffusion, then all the NPs are expelled from the crystals. As we increase the crystallization temperature, T c, the long period characterizing the periodically repeating crystal–amorphous polymer structure, r cc, increases. This results in a smaller number of amorphous domains per unit volumethe number of NPs per amorphous domain thus increases. While the scattering contrast between the pure silica and the polymer is constant, these arguments predict that the apparent contrast between the NP-rich and the polymer-rich domains scale linearly with r cc, as we confirm from our experiments. These facts allow us to posit that the NPs become more efficiently packed in the interlamellar zone with increasing T c until they form a fully filled monolayer. Above this temperature, NP multilayers form within each of the NP-rich domains. Our analysis approach, therefore, describes NP ordering that is achieved when driven by polymer crystallization.
doi_str_mv 10.1021/acsnano.1c03850
format article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1852501</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2564498326</sourcerecordid><originalsourceid>FETCH-LOGICAL-a337t-e650c1e23ec610dc27c524d699d49235c2fe19570282b7859b69f31187ce0783</originalsourceid><addsrcrecordid>eNp1kMtLAzEQh4MoWKtnr4snQbbNY_M6Sn0VilXowVtIs1lN2SY1yR7Wv94tLd48zTDz_QbmA-AawQmCGE21SV77MEEGEkHhCRghSVgJBfs4_espOgcXKW0gpFxwNgIP75322TW985_F65Df6ZidaW2xjLWN--nc152xdbHui7fQ9lsbi1nsU9Zt6350dsFfgrNGt8leHesYrJ4eV7OXcrF8ns_uF6UmhOfSMgoNsphYwxCsDeaG4qpmUtaVxIQa3FgkKYdY4DUXVK6ZbAhCghsLuSBjcHM4G1J2KhmXrfkywXtrskKCYgrRAN0eoF0M351NWW1dMrZttbehSwpTVlVSEMwGdHpATQwpRduoXXRbHXuFoNo7VUen6uh0SNwdEsNCbUIX_fDuv_Qvna15SQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2564498326</pqid></control><display><type>article</type><title>Quantifying Nanoparticle Ordering Induced by Polymer Crystallization</title><source>American Chemical Society:Jisc Collections:American Chemical Society Read &amp; Publish Agreement 2022-2024 (Reading list)</source><creator>Krauskopf, Alejandro A ; Jimenez, Andrew M ; Altorbaq, Abdullah S ; Müller, Alejandro J ; Kumar, Sanat K</creator><creatorcontrib>Krauskopf, Alejandro A ; Jimenez, Andrew M ; Altorbaq, Abdullah S ; Müller, Alejandro J ; Kumar, Sanat K ; Rensselaer Polytechnic Inst., Troy, NY (United States) ; Columbia Univ., New York, NY (United States) ; Univ. of South Carolina, Columbia, SC (United States)</creatorcontrib><description>It has recently been established that polymer crystallization can preferentially place nanoparticles (NPs) into the amorphous domains of a lamellar semicrystalline morphology. The phenomenology of this process is clear: when the time for NP diffusion is shorter than the crystal growth time, then the NPs are rejected by the growing crystals and placed in the amorphous domains. However, since there is no quantitative characterization of this ordered NP state, we develop a correlation function analysis for small-angle X-ray scattering data, inspired by classical methods used for enunciating the local morphology of lamellar semicrystalline polymers. We show that when the spherulitic growth rate is slower than NP diffusion, then all the NPs are expelled from the crystals. As we increase the crystallization temperature, T c, the long period characterizing the periodically repeating crystal–amorphous polymer structure, r cc, increases. This results in a smaller number of amorphous domains per unit volumethe number of NPs per amorphous domain thus increases. While the scattering contrast between the pure silica and the polymer is constant, these arguments predict that the apparent contrast between the NP-rich and the polymer-rich domains scale linearly with r cc, as we confirm from our experiments. These facts allow us to posit that the NPs become more efficiently packed in the interlamellar zone with increasing T c until they form a fully filled monolayer. Above this temperature, NP multilayers form within each of the NP-rich domains. Our analysis approach, therefore, describes NP ordering that is achieved when driven by polymer crystallization.</description><identifier>ISSN: 1936-0851</identifier><identifier>EISSN: 1936-086X</identifier><identifier>DOI: 10.1021/acsnano.1c03850</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Chemistry ; Materials Science ; Science &amp; Technology - Other Topics</subject><ispartof>ACS nano, 2021-09, Vol.15 (9), p.14430-14443</ispartof><rights>2021 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a337t-e650c1e23ec610dc27c524d699d49235c2fe19570282b7859b69f31187ce0783</citedby><cites>FETCH-LOGICAL-a337t-e650c1e23ec610dc27c524d699d49235c2fe19570282b7859b69f31187ce0783</cites><orcidid>0000-0002-8069-1790 ; 0000-0002-6690-2221 ; 0000-0002-9070-0427 ; 0000-0001-7009-7715 ; 0000-0001-7696-9705 ; 0000000170097715 ; 0000000280691790 ; 0000000176969705 ; 0000000290700427 ; 0000000266902221</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,315,786,790,891,27957,27958</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/1852501$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Krauskopf, Alejandro A</creatorcontrib><creatorcontrib>Jimenez, Andrew M</creatorcontrib><creatorcontrib>Altorbaq, Abdullah S</creatorcontrib><creatorcontrib>Müller, Alejandro J</creatorcontrib><creatorcontrib>Kumar, Sanat K</creatorcontrib><creatorcontrib>Rensselaer Polytechnic Inst., Troy, NY (United States)</creatorcontrib><creatorcontrib>Columbia Univ., New York, NY (United States)</creatorcontrib><creatorcontrib>Univ. of South Carolina, Columbia, SC (United States)</creatorcontrib><title>Quantifying Nanoparticle Ordering Induced by Polymer Crystallization</title><title>ACS nano</title><addtitle>ACS Nano</addtitle><description>It has recently been established that polymer crystallization can preferentially place nanoparticles (NPs) into the amorphous domains of a lamellar semicrystalline morphology. The phenomenology of this process is clear: when the time for NP diffusion is shorter than the crystal growth time, then the NPs are rejected by the growing crystals and placed in the amorphous domains. However, since there is no quantitative characterization of this ordered NP state, we develop a correlation function analysis for small-angle X-ray scattering data, inspired by classical methods used for enunciating the local morphology of lamellar semicrystalline polymers. We show that when the spherulitic growth rate is slower than NP diffusion, then all the NPs are expelled from the crystals. As we increase the crystallization temperature, T c, the long period characterizing the periodically repeating crystal–amorphous polymer structure, r cc, increases. This results in a smaller number of amorphous domains per unit volumethe number of NPs per amorphous domain thus increases. While the scattering contrast between the pure silica and the polymer is constant, these arguments predict that the apparent contrast between the NP-rich and the polymer-rich domains scale linearly with r cc, as we confirm from our experiments. These facts allow us to posit that the NPs become more efficiently packed in the interlamellar zone with increasing T c until they form a fully filled monolayer. Above this temperature, NP multilayers form within each of the NP-rich domains. Our analysis approach, therefore, describes NP ordering that is achieved when driven by polymer crystallization.</description><subject>Chemistry</subject><subject>Materials Science</subject><subject>Science &amp; Technology - Other Topics</subject><issn>1936-0851</issn><issn>1936-086X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp1kMtLAzEQh4MoWKtnr4snQbbNY_M6Sn0VilXowVtIs1lN2SY1yR7Wv94tLd48zTDz_QbmA-AawQmCGE21SV77MEEGEkHhCRghSVgJBfs4_espOgcXKW0gpFxwNgIP75322TW985_F65Df6ZidaW2xjLWN--nc152xdbHui7fQ9lsbi1nsU9Zt6350dsFfgrNGt8leHesYrJ4eV7OXcrF8ns_uF6UmhOfSMgoNsphYwxCsDeaG4qpmUtaVxIQa3FgkKYdY4DUXVK6ZbAhCghsLuSBjcHM4G1J2KhmXrfkywXtrskKCYgrRAN0eoF0M351NWW1dMrZttbehSwpTVlVSEMwGdHpATQwpRduoXXRbHXuFoNo7VUen6uh0SNwdEsNCbUIX_fDuv_Qvna15SQ</recordid><startdate>20210928</startdate><enddate>20210928</enddate><creator>Krauskopf, Alejandro A</creator><creator>Jimenez, Andrew M</creator><creator>Altorbaq, Abdullah S</creator><creator>Müller, Alejandro J</creator><creator>Kumar, Sanat K</creator><general>American Chemical Society</general><general>American Chemical Society (ACS)</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0002-8069-1790</orcidid><orcidid>https://orcid.org/0000-0002-6690-2221</orcidid><orcidid>https://orcid.org/0000-0002-9070-0427</orcidid><orcidid>https://orcid.org/0000-0001-7009-7715</orcidid><orcidid>https://orcid.org/0000-0001-7696-9705</orcidid><orcidid>https://orcid.org/0000000170097715</orcidid><orcidid>https://orcid.org/0000000280691790</orcidid><orcidid>https://orcid.org/0000000176969705</orcidid><orcidid>https://orcid.org/0000000290700427</orcidid><orcidid>https://orcid.org/0000000266902221</orcidid></search><sort><creationdate>20210928</creationdate><title>Quantifying Nanoparticle Ordering Induced by Polymer Crystallization</title><author>Krauskopf, Alejandro A ; Jimenez, Andrew M ; Altorbaq, Abdullah S ; Müller, Alejandro J ; Kumar, Sanat K</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a337t-e650c1e23ec610dc27c524d699d49235c2fe19570282b7859b69f31187ce0783</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Chemistry</topic><topic>Materials Science</topic><topic>Science &amp; Technology - Other Topics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Krauskopf, Alejandro A</creatorcontrib><creatorcontrib>Jimenez, Andrew M</creatorcontrib><creatorcontrib>Altorbaq, Abdullah S</creatorcontrib><creatorcontrib>Müller, Alejandro J</creatorcontrib><creatorcontrib>Kumar, Sanat K</creatorcontrib><creatorcontrib>Rensselaer Polytechnic Inst., Troy, NY (United States)</creatorcontrib><creatorcontrib>Columbia Univ., New York, NY (United States)</creatorcontrib><creatorcontrib>Univ. of South Carolina, Columbia, SC (United States)</creatorcontrib><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV</collection><jtitle>ACS nano</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Krauskopf, Alejandro A</au><au>Jimenez, Andrew M</au><au>Altorbaq, Abdullah S</au><au>Müller, Alejandro J</au><au>Kumar, Sanat K</au><aucorp>Rensselaer Polytechnic Inst., Troy, NY (United States)</aucorp><aucorp>Columbia Univ., New York, NY (United States)</aucorp><aucorp>Univ. of South Carolina, Columbia, SC (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Quantifying Nanoparticle Ordering Induced by Polymer Crystallization</atitle><jtitle>ACS nano</jtitle><addtitle>ACS Nano</addtitle><date>2021-09-28</date><risdate>2021</risdate><volume>15</volume><issue>9</issue><spage>14430</spage><epage>14443</epage><pages>14430-14443</pages><issn>1936-0851</issn><eissn>1936-086X</eissn><notes>ObjectType-Article-1</notes><notes>SourceType-Scholarly Journals-1</notes><notes>ObjectType-Feature-2</notes><notes>content type line 23</notes><notes>USDOE Office of Science (SC)</notes><notes>SC0018111; SC0018135; SC0018182</notes><abstract>It has recently been established that polymer crystallization can preferentially place nanoparticles (NPs) into the amorphous domains of a lamellar semicrystalline morphology. The phenomenology of this process is clear: when the time for NP diffusion is shorter than the crystal growth time, then the NPs are rejected by the growing crystals and placed in the amorphous domains. However, since there is no quantitative characterization of this ordered NP state, we develop a correlation function analysis for small-angle X-ray scattering data, inspired by classical methods used for enunciating the local morphology of lamellar semicrystalline polymers. We show that when the spherulitic growth rate is slower than NP diffusion, then all the NPs are expelled from the crystals. As we increase the crystallization temperature, T c, the long period characterizing the periodically repeating crystal–amorphous polymer structure, r cc, increases. This results in a smaller number of amorphous domains per unit volumethe number of NPs per amorphous domain thus increases. While the scattering contrast between the pure silica and the polymer is constant, these arguments predict that the apparent contrast between the NP-rich and the polymer-rich domains scale linearly with r cc, as we confirm from our experiments. These facts allow us to posit that the NPs become more efficiently packed in the interlamellar zone with increasing T c until they form a fully filled monolayer. Above this temperature, NP multilayers form within each of the NP-rich domains. Our analysis approach, therefore, describes NP ordering that is achieved when driven by polymer crystallization.</abstract><cop>United States</cop><pub>American Chemical Society</pub><doi>10.1021/acsnano.1c03850</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0002-8069-1790</orcidid><orcidid>https://orcid.org/0000-0002-6690-2221</orcidid><orcidid>https://orcid.org/0000-0002-9070-0427</orcidid><orcidid>https://orcid.org/0000-0001-7009-7715</orcidid><orcidid>https://orcid.org/0000-0001-7696-9705</orcidid><orcidid>https://orcid.org/0000000170097715</orcidid><orcidid>https://orcid.org/0000000280691790</orcidid><orcidid>https://orcid.org/0000000176969705</orcidid><orcidid>https://orcid.org/0000000290700427</orcidid><orcidid>https://orcid.org/0000000266902221</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1936-0851
ispartof ACS nano, 2021-09, Vol.15 (9), p.14430-14443
issn 1936-0851
1936-086X
language eng
recordid cdi_osti_scitechconnect_1852501
source American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list)
subjects Chemistry
Materials Science
Science & Technology - Other Topics
title Quantifying Nanoparticle Ordering Induced by Polymer Crystallization
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-09-21T13%3A52%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Quantifying%20Nanoparticle%20Ordering%20Induced%20by%20Polymer%20Crystallization&rft.jtitle=ACS%20nano&rft.au=Krauskopf,%20Alejandro%20A&rft.aucorp=Rensselaer%20Polytechnic%20Inst.,%20Troy,%20NY%20(United%20States)&rft.date=2021-09-28&rft.volume=15&rft.issue=9&rft.spage=14430&rft.epage=14443&rft.pages=14430-14443&rft.issn=1936-0851&rft.eissn=1936-086X&rft_id=info:doi/10.1021/acsnano.1c03850&rft_dat=%3Cproquest_osti_%3E2564498326%3C/proquest_osti_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a337t-e650c1e23ec610dc27c524d699d49235c2fe19570282b7859b69f31187ce0783%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2564498326&rft_id=info:pmid/&rfr_iscdi=true