Loading…

Hole‐Trapping‐Induced Stabilization of Ni4 + in SrNiO3/LaFeO3 Superlattices

Creating new functionality in materials containing transition metals is predicated on the ability to control the associated charge states. For a given transition metal, there is an upper limit on valence that is not exceeded under normal conditions. Here, it is demonstrated that this limit of 3+ for...

Full description

Saved in:
Bibliographic Details
Published in:Advanced materials (Weinheim) 2020-11, Vol.32 (45), p.e2005003-n/a
Main Authors: Wang, Le, Yang, Zhenzhong, Bowden, Mark E., Freeland, John W., Sushko, Peter V., Spurgeon, Steven R., Matthews, Bethany, Samarakoon, Widitha S., Zhou, Hua, Feng, Zhenxing, Engelhard, Mark H., Du, Yingge, Chambers, Scott A.
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page n/a
container_issue 45
container_start_page e2005003
container_title Advanced materials (Weinheim)
container_volume 32
creator Wang, Le
Yang, Zhenzhong
Bowden, Mark E.
Freeland, John W.
Sushko, Peter V.
Spurgeon, Steven R.
Matthews, Bethany
Samarakoon, Widitha S.
Zhou, Hua
Feng, Zhenxing
Engelhard, Mark H.
Du, Yingge
Chambers, Scott A.
description Creating new functionality in materials containing transition metals is predicated on the ability to control the associated charge states. For a given transition metal, there is an upper limit on valence that is not exceeded under normal conditions. Here, it is demonstrated that this limit of 3+ for Ni and Fe can be exceeded via synthesis of (SrNiO3)m/(LaFeO3)n superlattices by tuning n and m. The Goldschmidt tolerance constraints are lifted, and SrNi4+O3 with holes on adjacent O anions is stabilized as a perovskite at the single‐unit‐cell level (m = 1). Holding m = 1, spectroscopy reveals that the n = 1 superlattice contains Ni3+ and Fe4+, whereas Ni4+ and Fe3+ are observed in the n = 5 superlattice. It is revealed that the B‐site cation valences can be tuned by controlling the magnitude of the FeO6 octahedral rotations, which, in turn, determine the energy balance between Ni3+/Fe4+ and Ni4+/Fe3+, thus controlling emergent electrical properties such as the band alignment and resulting hole confinement. This approach can be extended to other systems for synthesizing novel, metastable layered structures with new functionalities. The otherwise unstable Ni4+ can be stabilized in perovskite oxides by artificial structuring in carefully designed (SrNiO3)1/(LaFeO3)n superlattices. Spectroscopy measurements in combination with density functional theory calculations reveal that the B‐site cation valences can be tuned by controlling the magnitude of the FeO6 octahedral rotations, which in turn drive the energy balance between Ni3+/Fe4+ and Ni4+/Fe3+, thus controlling emergent electrical properties.
doi_str_mv 10.1002/adma.202005003
format article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1763017</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2458902754</sourcerecordid><originalsourceid>FETCH-LOGICAL-o1383-3d092a5950c2577314762d4e69bd4dad3e7edb0f5716ebfa4e27ffce7bd751b53</originalsourceid><addsrcrecordid>eNpd0U1r3DAQBmARUsjm49qzSS6F4mT0ZVnHJW2ygU2WsOlZyNI4UfBarmVTtqdce8tvzC-pw5YcepoZeHhheAn5TOGcArAL6zf2nAEDkAB8j8yoZDQXoOU-mYHmMteFKA_IYUrPAKALKGbkfhEbfHt5feht14X2cVpvWj869Nl6sFVowm87hNhmsc7ugnh7-fM1C2227u_Cil8s7RWueLYeO-wbOwzBYTomn2rbJDz5N4_Ij6vvD5eLfLm6vrmcL_NIeclz7kEzK7UEx6RSnApVMC-w0JUX3nqOCn0FtVS0wKq2Apmqa4eq8krSSvIjcrrLjWkIJrkwoHtysW3RDYaqggNVE_qyQ10ff46YBrMJyWHT2BbjmAwTohQgpCgnevYffY5j304vTEqWGpiSYlJ6p36FBrem68PG9ltDwbx3YN47MB8dmPm32_nHxf8CLOp9ew</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2458902754</pqid></control><display><type>article</type><title>Hole‐Trapping‐Induced Stabilization of Ni4 + in SrNiO3/LaFeO3 Superlattices</title><source>Wiley-Blackwell Journals</source><creator>Wang, Le ; Yang, Zhenzhong ; Bowden, Mark E. ; Freeland, John W. ; Sushko, Peter V. ; Spurgeon, Steven R. ; Matthews, Bethany ; Samarakoon, Widitha S. ; Zhou, Hua ; Feng, Zhenxing ; Engelhard, Mark H. ; Du, Yingge ; Chambers, Scott A.</creator><creatorcontrib>Wang, Le ; Yang, Zhenzhong ; Bowden, Mark E. ; Freeland, John W. ; Sushko, Peter V. ; Spurgeon, Steven R. ; Matthews, Bethany ; Samarakoon, Widitha S. ; Zhou, Hua ; Feng, Zhenxing ; Engelhard, Mark H. ; Du, Yingge ; Chambers, Scott A. ; Argonne National Lab. (ANL), Argonne, IL (United States) ; Pacific Northwest National Lab. (PNNL), Richland, WA (United States)</creatorcontrib><description>Creating new functionality in materials containing transition metals is predicated on the ability to control the associated charge states. For a given transition metal, there is an upper limit on valence that is not exceeded under normal conditions. Here, it is demonstrated that this limit of 3+ for Ni and Fe can be exceeded via synthesis of (SrNiO3)m/(LaFeO3)n superlattices by tuning n and m. The Goldschmidt tolerance constraints are lifted, and SrNi4+O3 with holes on adjacent O anions is stabilized as a perovskite at the single‐unit‐cell level (m = 1). Holding m = 1, spectroscopy reveals that the n = 1 superlattice contains Ni3+ and Fe4+, whereas Ni4+ and Fe3+ are observed in the n = 5 superlattice. It is revealed that the B‐site cation valences can be tuned by controlling the magnitude of the FeO6 octahedral rotations, which, in turn, determine the energy balance between Ni3+/Fe4+ and Ni4+/Fe3+, thus controlling emergent electrical properties such as the band alignment and resulting hole confinement. This approach can be extended to other systems for synthesizing novel, metastable layered structures with new functionalities. The otherwise unstable Ni4+ can be stabilized in perovskite oxides by artificial structuring in carefully designed (SrNiO3)1/(LaFeO3)n superlattices. Spectroscopy measurements in combination with density functional theory calculations reveal that the B‐site cation valences can be tuned by controlling the magnitude of the FeO6 octahedral rotations, which in turn drive the energy balance between Ni3+/Fe4+ and Ni4+/Fe3+, thus controlling emergent electrical properties.</description><identifier>ISSN: 0935-9648</identifier><identifier>EISSN: 1521-4095</identifier><identifier>DOI: 10.1002/adma.202005003</identifier><language>eng</language><publisher>Weinheim: Wiley Subscription Services, Inc</publisher><subject>charge transfer ; Electrical properties ; Fe4 ; Ferrites ; Lanthanum compounds ; MATERIALS SCIENCE ; Ni4 ; Nickel ; octahedral rotation ; Perovskites ; Stability ; Superlattices ; Transition metals</subject><ispartof>Advanced materials (Weinheim), 2020-11, Vol.32 (45), p.e2005003-n/a</ispartof><rights>2020 Wiley‐VCH GmbH</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0002-7730-9482 ; 0000000173384146 ; 000000031218839X ; 0000000196801950 ; 0000000255430812 ; 000000025415043X ; 0000000277309482</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fadma.202005003$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fadma.202005003$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>230,315,786,790,891,27957,27958,50923,51032</link.rule.ids><backlink>$$Uhttps://www.osti.gov/servlets/purl/1763017$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Wang, Le</creatorcontrib><creatorcontrib>Yang, Zhenzhong</creatorcontrib><creatorcontrib>Bowden, Mark E.</creatorcontrib><creatorcontrib>Freeland, John W.</creatorcontrib><creatorcontrib>Sushko, Peter V.</creatorcontrib><creatorcontrib>Spurgeon, Steven R.</creatorcontrib><creatorcontrib>Matthews, Bethany</creatorcontrib><creatorcontrib>Samarakoon, Widitha S.</creatorcontrib><creatorcontrib>Zhou, Hua</creatorcontrib><creatorcontrib>Feng, Zhenxing</creatorcontrib><creatorcontrib>Engelhard, Mark H.</creatorcontrib><creatorcontrib>Du, Yingge</creatorcontrib><creatorcontrib>Chambers, Scott A.</creatorcontrib><creatorcontrib>Argonne National Lab. (ANL), Argonne, IL (United States)</creatorcontrib><creatorcontrib>Pacific Northwest National Lab. (PNNL), Richland, WA (United States)</creatorcontrib><title>Hole‐Trapping‐Induced Stabilization of Ni4 + in SrNiO3/LaFeO3 Superlattices</title><title>Advanced materials (Weinheim)</title><description>Creating new functionality in materials containing transition metals is predicated on the ability to control the associated charge states. For a given transition metal, there is an upper limit on valence that is not exceeded under normal conditions. Here, it is demonstrated that this limit of 3+ for Ni and Fe can be exceeded via synthesis of (SrNiO3)m/(LaFeO3)n superlattices by tuning n and m. The Goldschmidt tolerance constraints are lifted, and SrNi4+O3 with holes on adjacent O anions is stabilized as a perovskite at the single‐unit‐cell level (m = 1). Holding m = 1, spectroscopy reveals that the n = 1 superlattice contains Ni3+ and Fe4+, whereas Ni4+ and Fe3+ are observed in the n = 5 superlattice. It is revealed that the B‐site cation valences can be tuned by controlling the magnitude of the FeO6 octahedral rotations, which, in turn, determine the energy balance between Ni3+/Fe4+ and Ni4+/Fe3+, thus controlling emergent electrical properties such as the band alignment and resulting hole confinement. This approach can be extended to other systems for synthesizing novel, metastable layered structures with new functionalities. The otherwise unstable Ni4+ can be stabilized in perovskite oxides by artificial structuring in carefully designed (SrNiO3)1/(LaFeO3)n superlattices. Spectroscopy measurements in combination with density functional theory calculations reveal that the B‐site cation valences can be tuned by controlling the magnitude of the FeO6 octahedral rotations, which in turn drive the energy balance between Ni3+/Fe4+ and Ni4+/Fe3+, thus controlling emergent electrical properties.</description><subject>charge transfer</subject><subject>Electrical properties</subject><subject>Fe4</subject><subject>Ferrites</subject><subject>Lanthanum compounds</subject><subject>MATERIALS SCIENCE</subject><subject>Ni4</subject><subject>Nickel</subject><subject>octahedral rotation</subject><subject>Perovskites</subject><subject>Stability</subject><subject>Superlattices</subject><subject>Transition metals</subject><issn>0935-9648</issn><issn>1521-4095</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNpd0U1r3DAQBmARUsjm49qzSS6F4mT0ZVnHJW2ygU2WsOlZyNI4UfBarmVTtqdce8tvzC-pw5YcepoZeHhheAn5TOGcArAL6zf2nAEDkAB8j8yoZDQXoOU-mYHmMteFKA_IYUrPAKALKGbkfhEbfHt5feht14X2cVpvWj869Nl6sFVowm87hNhmsc7ugnh7-fM1C2227u_Cil8s7RWueLYeO-wbOwzBYTomn2rbJDz5N4_Ij6vvD5eLfLm6vrmcL_NIeclz7kEzK7UEx6RSnApVMC-w0JUX3nqOCn0FtVS0wKq2Apmqa4eq8krSSvIjcrrLjWkIJrkwoHtysW3RDYaqggNVE_qyQ10ff46YBrMJyWHT2BbjmAwTohQgpCgnevYffY5j304vTEqWGpiSYlJ6p36FBrem68PG9ltDwbx3YN47MB8dmPm32_nHxf8CLOp9ew</recordid><startdate>20201101</startdate><enddate>20201101</enddate><creator>Wang, Le</creator><creator>Yang, Zhenzhong</creator><creator>Bowden, Mark E.</creator><creator>Freeland, John W.</creator><creator>Sushko, Peter V.</creator><creator>Spurgeon, Steven R.</creator><creator>Matthews, Bethany</creator><creator>Samarakoon, Widitha S.</creator><creator>Zhou, Hua</creator><creator>Feng, Zhenxing</creator><creator>Engelhard, Mark H.</creator><creator>Du, Yingge</creator><creator>Chambers, Scott A.</creator><general>Wiley Subscription Services, Inc</general><general>Wiley</general><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>7X8</scope><scope>OIOZB</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0002-7730-9482</orcidid><orcidid>https://orcid.org/0000000173384146</orcidid><orcidid>https://orcid.org/000000031218839X</orcidid><orcidid>https://orcid.org/0000000196801950</orcidid><orcidid>https://orcid.org/0000000255430812</orcidid><orcidid>https://orcid.org/000000025415043X</orcidid><orcidid>https://orcid.org/0000000277309482</orcidid></search><sort><creationdate>20201101</creationdate><title>Hole‐Trapping‐Induced Stabilization of Ni4 + in SrNiO3/LaFeO3 Superlattices</title><author>Wang, Le ; Yang, Zhenzhong ; Bowden, Mark E. ; Freeland, John W. ; Sushko, Peter V. ; Spurgeon, Steven R. ; Matthews, Bethany ; Samarakoon, Widitha S. ; Zhou, Hua ; Feng, Zhenxing ; Engelhard, Mark H. ; Du, Yingge ; Chambers, Scott A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-o1383-3d092a5950c2577314762d4e69bd4dad3e7edb0f5716ebfa4e27ffce7bd751b53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>charge transfer</topic><topic>Electrical properties</topic><topic>Fe4</topic><topic>Ferrites</topic><topic>Lanthanum compounds</topic><topic>MATERIALS SCIENCE</topic><topic>Ni4</topic><topic>Nickel</topic><topic>octahedral rotation</topic><topic>Perovskites</topic><topic>Stability</topic><topic>Superlattices</topic><topic>Transition metals</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Le</creatorcontrib><creatorcontrib>Yang, Zhenzhong</creatorcontrib><creatorcontrib>Bowden, Mark E.</creatorcontrib><creatorcontrib>Freeland, John W.</creatorcontrib><creatorcontrib>Sushko, Peter V.</creatorcontrib><creatorcontrib>Spurgeon, Steven R.</creatorcontrib><creatorcontrib>Matthews, Bethany</creatorcontrib><creatorcontrib>Samarakoon, Widitha S.</creatorcontrib><creatorcontrib>Zhou, Hua</creatorcontrib><creatorcontrib>Feng, Zhenxing</creatorcontrib><creatorcontrib>Engelhard, Mark H.</creatorcontrib><creatorcontrib>Du, Yingge</creatorcontrib><creatorcontrib>Chambers, Scott A.</creatorcontrib><creatorcontrib>Argonne National Lab. (ANL), Argonne, IL (United States)</creatorcontrib><creatorcontrib>Pacific Northwest National Lab. (PNNL), Richland, WA (United States)</creatorcontrib><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>Advanced materials (Weinheim)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Le</au><au>Yang, Zhenzhong</au><au>Bowden, Mark E.</au><au>Freeland, John W.</au><au>Sushko, Peter V.</au><au>Spurgeon, Steven R.</au><au>Matthews, Bethany</au><au>Samarakoon, Widitha S.</au><au>Zhou, Hua</au><au>Feng, Zhenxing</au><au>Engelhard, Mark H.</au><au>Du, Yingge</au><au>Chambers, Scott A.</au><aucorp>Argonne National Lab. (ANL), Argonne, IL (United States)</aucorp><aucorp>Pacific Northwest National Lab. (PNNL), Richland, WA (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Hole‐Trapping‐Induced Stabilization of Ni4 + in SrNiO3/LaFeO3 Superlattices</atitle><jtitle>Advanced materials (Weinheim)</jtitle><date>2020-11-01</date><risdate>2020</risdate><volume>32</volume><issue>45</issue><spage>e2005003</spage><epage>n/a</epage><pages>e2005003-n/a</pages><issn>0935-9648</issn><eissn>1521-4095</eissn><notes>ObjectType-Article-1</notes><notes>SourceType-Scholarly Journals-1</notes><notes>ObjectType-Feature-2</notes><notes>content type line 23</notes><notes>USDOE Office of Science (SC), Basic Energy Sciences (BES). Materials Sciences &amp; Engineering Division</notes><notes>AC05-76RL01830; AC02-06CH11357; 10122</notes><notes>USDOE Office of Science (SC), Basic Energy Sciences (BES)</notes><notes>PNNL-SA-152538</notes><abstract>Creating new functionality in materials containing transition metals is predicated on the ability to control the associated charge states. For a given transition metal, there is an upper limit on valence that is not exceeded under normal conditions. Here, it is demonstrated that this limit of 3+ for Ni and Fe can be exceeded via synthesis of (SrNiO3)m/(LaFeO3)n superlattices by tuning n and m. The Goldschmidt tolerance constraints are lifted, and SrNi4+O3 with holes on adjacent O anions is stabilized as a perovskite at the single‐unit‐cell level (m = 1). Holding m = 1, spectroscopy reveals that the n = 1 superlattice contains Ni3+ and Fe4+, whereas Ni4+ and Fe3+ are observed in the n = 5 superlattice. It is revealed that the B‐site cation valences can be tuned by controlling the magnitude of the FeO6 octahedral rotations, which, in turn, determine the energy balance between Ni3+/Fe4+ and Ni4+/Fe3+, thus controlling emergent electrical properties such as the band alignment and resulting hole confinement. This approach can be extended to other systems for synthesizing novel, metastable layered structures with new functionalities. The otherwise unstable Ni4+ can be stabilized in perovskite oxides by artificial structuring in carefully designed (SrNiO3)1/(LaFeO3)n superlattices. Spectroscopy measurements in combination with density functional theory calculations reveal that the B‐site cation valences can be tuned by controlling the magnitude of the FeO6 octahedral rotations, which in turn drive the energy balance between Ni3+/Fe4+ and Ni4+/Fe3+, thus controlling emergent electrical properties.</abstract><cop>Weinheim</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/adma.202005003</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-7730-9482</orcidid><orcidid>https://orcid.org/0000000173384146</orcidid><orcidid>https://orcid.org/000000031218839X</orcidid><orcidid>https://orcid.org/0000000196801950</orcidid><orcidid>https://orcid.org/0000000255430812</orcidid><orcidid>https://orcid.org/000000025415043X</orcidid><orcidid>https://orcid.org/0000000277309482</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0935-9648
ispartof Advanced materials (Weinheim), 2020-11, Vol.32 (45), p.e2005003-n/a
issn 0935-9648
1521-4095
language eng
recordid cdi_osti_scitechconnect_1763017
source Wiley-Blackwell Journals
subjects charge transfer
Electrical properties
Fe4
Ferrites
Lanthanum compounds
MATERIALS SCIENCE
Ni4
Nickel
octahedral rotation
Perovskites
Stability
Superlattices
Transition metals
title Hole‐Trapping‐Induced Stabilization of Ni4 + in SrNiO3/LaFeO3 Superlattices
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-09-22T18%3A21%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Hole%E2%80%90Trapping%E2%80%90Induced%20Stabilization%20of%20Ni4%E2%80%89+%20in%20SrNiO3/LaFeO3%20Superlattices&rft.jtitle=Advanced%20materials%20(Weinheim)&rft.au=Wang,%20Le&rft.aucorp=Argonne%20National%20Lab.%20(ANL),%20Argonne,%20IL%20(United%20States)&rft.date=2020-11-01&rft.volume=32&rft.issue=45&rft.spage=e2005003&rft.epage=n/a&rft.pages=e2005003-n/a&rft.issn=0935-9648&rft.eissn=1521-4095&rft_id=info:doi/10.1002/adma.202005003&rft_dat=%3Cproquest_osti_%3E2458902754%3C/proquest_osti_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-o1383-3d092a5950c2577314762d4e69bd4dad3e7edb0f5716ebfa4e27ffce7bd751b53%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2458902754&rft_id=info:pmid/&rfr_iscdi=true