Loading…
Cryogenic C-band wavelength division multiplexing system using an AIM Photonics Foundry process design kit
Cryogenic environments make superconducting computing possible by reducing thermal noise, electrical resistance and heat dissipation. Heat generated by the electronics and thermal conductivity of electrical transmission lines to the outside world constitute two main sources of thermal load in such s...
Saved in:
Published in: | Optics express 2020-11, Vol.28 (24), p.35651-35662 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c347t-b94fe8caa07ec3850d1ca1c4e0c2de658695a83acf403235955c58b2ebbabf543 |
---|---|
cites | cdi_FETCH-LOGICAL-c347t-b94fe8caa07ec3850d1ca1c4e0c2de658695a83acf403235955c58b2ebbabf543 |
container_end_page | 35662 |
container_issue | 24 |
container_start_page | 35651 |
container_title | Optics express |
container_volume | 28 |
creator | Fard, Erfan M Long, Christopher M Lentine, Anthony L Norwood, Robert A |
description | Cryogenic environments make superconducting computing possible by reducing thermal noise, electrical resistance and heat dissipation. Heat generated by the electronics and thermal conductivity of electrical transmission lines to the outside world constitute two main sources of thermal load in such systems. As a result, higher data rates require additional transmission lines which come at an increasingly higher cooling power cost. Hybrid or monolithic integration of silicon photonics with the electronics can be the key to higher data rates and lower power costs in these systems. We present a 4-channel wavelength division multiplexing photonic integrated circuit (PIC) built from modulators in the AIM Photonics process development kit (PDK) that operate at 25 Gbps at room temperature and 10 Gbps at 40 K. We further demonstrate 2-channel operation for 20 Gbps aggregate data rate at 40 K using two different modulators/wavelengths, with the potential for higher aggregate bit rates by utilizing additional channels. |
doi_str_mv | 10.1364/OE.404617 |
format | article |
fullrecord | <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1721609</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2474497620</sourcerecordid><originalsourceid>FETCH-LOGICAL-c347t-b94fe8caa07ec3850d1ca1c4e0c2de658695a83acf403235955c58b2ebbabf543</originalsourceid><addsrcrecordid>eNpNkE1LxDAQQIMofh_8AxI86aGaNGnTHmVZP0BZD3oOaTrdjbbJ2klX999bWRVPMwOPx_AIOeHskotcXs2ml5LJnKstss9ZKRPJCrX9b98jB4ivjHGpSrVL9oQQqsxVvk9eJ_06zME7SydJZXxNP8wKWvDzuKC1Wzl0wdNuaKNbtvDp_JziGiN0dMDvw3h6ff9InxYhhlGC9CYMvu7XdNkHC4i0BnRzT99cPCI7jWkRjn_mIXm5mT5P7pKH2e395PohsUKqmFSlbKCwxjAFVhQZq7k13EpgNq0hz4q8zEwhjG0kE6nIyiyzWVGlUFWmajIpDsnZxhswOo3WRbALG7wHGzVXKc9ZOULnG2j8830AjLpzaKFtjYcwoE6lkrJUecpG9GKD2j4g9tDoZe860681Z_q7v55N9ab_yJ7-aIeqg_qP_A0uvgCHzYEG</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2474497620</pqid></control><display><type>article</type><title>Cryogenic C-band wavelength division multiplexing system using an AIM Photonics Foundry process design kit</title><source>EZB Electronic Journals Library</source><creator>Fard, Erfan M ; Long, Christopher M ; Lentine, Anthony L ; Norwood, Robert A</creator><creatorcontrib>Fard, Erfan M ; Long, Christopher M ; Lentine, Anthony L ; Norwood, Robert A ; Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)</creatorcontrib><description>Cryogenic environments make superconducting computing possible by reducing thermal noise, electrical resistance and heat dissipation. Heat generated by the electronics and thermal conductivity of electrical transmission lines to the outside world constitute two main sources of thermal load in such systems. As a result, higher data rates require additional transmission lines which come at an increasingly higher cooling power cost. Hybrid or monolithic integration of silicon photonics with the electronics can be the key to higher data rates and lower power costs in these systems. We present a 4-channel wavelength division multiplexing photonic integrated circuit (PIC) built from modulators in the AIM Photonics process development kit (PDK) that operate at 25 Gbps at room temperature and 10 Gbps at 40 K. We further demonstrate 2-channel operation for 20 Gbps aggregate data rate at 40 K using two different modulators/wavelengths, with the potential for higher aggregate bit rates by utilizing additional channels.</description><identifier>ISSN: 1094-4087</identifier><identifier>EISSN: 1094-4087</identifier><identifier>DOI: 10.1364/OE.404617</identifier><identifier>PMID: 33379676</identifier><language>eng</language><publisher>United States: Optical Society of America (OSA)</publisher><subject>ENGINEERING</subject><ispartof>Optics express, 2020-11, Vol.28 (24), p.35651-35662</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c347t-b94fe8caa07ec3850d1ca1c4e0c2de658695a83acf403235955c58b2ebbabf543</citedby><cites>FETCH-LOGICAL-c347t-b94fe8caa07ec3850d1ca1c4e0c2de658695a83acf403235955c58b2ebbabf543</cites><orcidid>0000-0003-0560-0737</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,315,783,787,888,27936,27937</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33379676$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/servlets/purl/1721609$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Fard, Erfan M</creatorcontrib><creatorcontrib>Long, Christopher M</creatorcontrib><creatorcontrib>Lentine, Anthony L</creatorcontrib><creatorcontrib>Norwood, Robert A</creatorcontrib><creatorcontrib>Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)</creatorcontrib><title>Cryogenic C-band wavelength division multiplexing system using an AIM Photonics Foundry process design kit</title><title>Optics express</title><addtitle>Opt Express</addtitle><description>Cryogenic environments make superconducting computing possible by reducing thermal noise, electrical resistance and heat dissipation. Heat generated by the electronics and thermal conductivity of electrical transmission lines to the outside world constitute two main sources of thermal load in such systems. As a result, higher data rates require additional transmission lines which come at an increasingly higher cooling power cost. Hybrid or monolithic integration of silicon photonics with the electronics can be the key to higher data rates and lower power costs in these systems. We present a 4-channel wavelength division multiplexing photonic integrated circuit (PIC) built from modulators in the AIM Photonics process development kit (PDK) that operate at 25 Gbps at room temperature and 10 Gbps at 40 K. We further demonstrate 2-channel operation for 20 Gbps aggregate data rate at 40 K using two different modulators/wavelengths, with the potential for higher aggregate bit rates by utilizing additional channels.</description><subject>ENGINEERING</subject><issn>1094-4087</issn><issn>1094-4087</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNpNkE1LxDAQQIMofh_8AxI86aGaNGnTHmVZP0BZD3oOaTrdjbbJ2klX999bWRVPMwOPx_AIOeHskotcXs2ml5LJnKstss9ZKRPJCrX9b98jB4ivjHGpSrVL9oQQqsxVvk9eJ_06zME7SydJZXxNP8wKWvDzuKC1Wzl0wdNuaKNbtvDp_JziGiN0dMDvw3h6ff9InxYhhlGC9CYMvu7XdNkHC4i0BnRzT99cPCI7jWkRjn_mIXm5mT5P7pKH2e395PohsUKqmFSlbKCwxjAFVhQZq7k13EpgNq0hz4q8zEwhjG0kE6nIyiyzWVGlUFWmajIpDsnZxhswOo3WRbALG7wHGzVXKc9ZOULnG2j8830AjLpzaKFtjYcwoE6lkrJUecpG9GKD2j4g9tDoZe860681Z_q7v55N9ab_yJ7-aIeqg_qP_A0uvgCHzYEG</recordid><startdate>20201123</startdate><enddate>20201123</enddate><creator>Fard, Erfan M</creator><creator>Long, Christopher M</creator><creator>Lentine, Anthony L</creator><creator>Norwood, Robert A</creator><general>Optical Society of America (OSA)</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>OIOZB</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0003-0560-0737</orcidid></search><sort><creationdate>20201123</creationdate><title>Cryogenic C-band wavelength division multiplexing system using an AIM Photonics Foundry process design kit</title><author>Fard, Erfan M ; Long, Christopher M ; Lentine, Anthony L ; Norwood, Robert A</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c347t-b94fe8caa07ec3850d1ca1c4e0c2de658695a83acf403235955c58b2ebbabf543</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>ENGINEERING</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fard, Erfan M</creatorcontrib><creatorcontrib>Long, Christopher M</creatorcontrib><creatorcontrib>Lentine, Anthony L</creatorcontrib><creatorcontrib>Norwood, Robert A</creatorcontrib><creatorcontrib>Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>Optics express</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fard, Erfan M</au><au>Long, Christopher M</au><au>Lentine, Anthony L</au><au>Norwood, Robert A</au><aucorp>Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Cryogenic C-band wavelength division multiplexing system using an AIM Photonics Foundry process design kit</atitle><jtitle>Optics express</jtitle><addtitle>Opt Express</addtitle><date>2020-11-23</date><risdate>2020</risdate><volume>28</volume><issue>24</issue><spage>35651</spage><epage>35662</epage><pages>35651-35662</pages><issn>1094-4087</issn><eissn>1094-4087</eissn><abstract>Cryogenic environments make superconducting computing possible by reducing thermal noise, electrical resistance and heat dissipation. Heat generated by the electronics and thermal conductivity of electrical transmission lines to the outside world constitute two main sources of thermal load in such systems. As a result, higher data rates require additional transmission lines which come at an increasingly higher cooling power cost. Hybrid or monolithic integration of silicon photonics with the electronics can be the key to higher data rates and lower power costs in these systems. We present a 4-channel wavelength division multiplexing photonic integrated circuit (PIC) built from modulators in the AIM Photonics process development kit (PDK) that operate at 25 Gbps at room temperature and 10 Gbps at 40 K. We further demonstrate 2-channel operation for 20 Gbps aggregate data rate at 40 K using two different modulators/wavelengths, with the potential for higher aggregate bit rates by utilizing additional channels.</abstract><cop>United States</cop><pub>Optical Society of America (OSA)</pub><pmid>33379676</pmid><doi>10.1364/OE.404617</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0003-0560-0737</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1094-4087 |
ispartof | Optics express, 2020-11, Vol.28 (24), p.35651-35662 |
issn | 1094-4087 1094-4087 |
language | eng |
recordid | cdi_osti_scitechconnect_1721609 |
source | EZB Electronic Journals Library |
subjects | ENGINEERING |
title | Cryogenic C-band wavelength division multiplexing system using an AIM Photonics Foundry process design kit |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-11-15T19%3A03%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Cryogenic%20C-band%20wavelength%20division%20multiplexing%20system%20using%20an%20AIM%20Photonics%20Foundry%20process%20design%20kit&rft.jtitle=Optics%20express&rft.au=Fard,%20Erfan%20M&rft.aucorp=Sandia%20National%20Lab.%20(SNL-NM),%20Albuquerque,%20NM%20(United%20States)&rft.date=2020-11-23&rft.volume=28&rft.issue=24&rft.spage=35651&rft.epage=35662&rft.pages=35651-35662&rft.issn=1094-4087&rft.eissn=1094-4087&rft_id=info:doi/10.1364/OE.404617&rft_dat=%3Cproquest_osti_%3E2474497620%3C/proquest_osti_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c347t-b94fe8caa07ec3850d1ca1c4e0c2de658695a83acf403235955c58b2ebbabf543%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2474497620&rft_id=info:pmid/33379676&rfr_iscdi=true |