Loading…

Cryogenic C-band wavelength division multiplexing system using an AIM Photonics Foundry process design kit

Cryogenic environments make superconducting computing possible by reducing thermal noise, electrical resistance and heat dissipation. Heat generated by the electronics and thermal conductivity of electrical transmission lines to the outside world constitute two main sources of thermal load in such s...

Full description

Saved in:
Bibliographic Details
Published in:Optics express 2020-11, Vol.28 (24), p.35651-35662
Main Authors: Fard, Erfan M, Long, Christopher M, Lentine, Anthony L, Norwood, Robert A
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c347t-b94fe8caa07ec3850d1ca1c4e0c2de658695a83acf403235955c58b2ebbabf543
cites cdi_FETCH-LOGICAL-c347t-b94fe8caa07ec3850d1ca1c4e0c2de658695a83acf403235955c58b2ebbabf543
container_end_page 35662
container_issue 24
container_start_page 35651
container_title Optics express
container_volume 28
creator Fard, Erfan M
Long, Christopher M
Lentine, Anthony L
Norwood, Robert A
description Cryogenic environments make superconducting computing possible by reducing thermal noise, electrical resistance and heat dissipation. Heat generated by the electronics and thermal conductivity of electrical transmission lines to the outside world constitute two main sources of thermal load in such systems. As a result, higher data rates require additional transmission lines which come at an increasingly higher cooling power cost. Hybrid or monolithic integration of silicon photonics with the electronics can be the key to higher data rates and lower power costs in these systems. We present a 4-channel wavelength division multiplexing photonic integrated circuit (PIC) built from modulators in the AIM Photonics process development kit (PDK) that operate at 25 Gbps at room temperature and 10 Gbps at 40 K. We further demonstrate 2-channel operation for 20 Gbps aggregate data rate at 40 K using two different modulators/wavelengths, with the potential for higher aggregate bit rates by utilizing additional channels.
doi_str_mv 10.1364/OE.404617
format article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1721609</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2474497620</sourcerecordid><originalsourceid>FETCH-LOGICAL-c347t-b94fe8caa07ec3850d1ca1c4e0c2de658695a83acf403235955c58b2ebbabf543</originalsourceid><addsrcrecordid>eNpNkE1LxDAQQIMofh_8AxI86aGaNGnTHmVZP0BZD3oOaTrdjbbJ2klX999bWRVPMwOPx_AIOeHskotcXs2ml5LJnKstss9ZKRPJCrX9b98jB4ivjHGpSrVL9oQQqsxVvk9eJ_06zME7SydJZXxNP8wKWvDzuKC1Wzl0wdNuaKNbtvDp_JziGiN0dMDvw3h6ff9InxYhhlGC9CYMvu7XdNkHC4i0BnRzT99cPCI7jWkRjn_mIXm5mT5P7pKH2e395PohsUKqmFSlbKCwxjAFVhQZq7k13EpgNq0hz4q8zEwhjG0kE6nIyiyzWVGlUFWmajIpDsnZxhswOo3WRbALG7wHGzVXKc9ZOULnG2j8830AjLpzaKFtjYcwoE6lkrJUecpG9GKD2j4g9tDoZe860681Z_q7v55N9ab_yJ7-aIeqg_qP_A0uvgCHzYEG</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2474497620</pqid></control><display><type>article</type><title>Cryogenic C-band wavelength division multiplexing system using an AIM Photonics Foundry process design kit</title><source>EZB Electronic Journals Library</source><creator>Fard, Erfan M ; Long, Christopher M ; Lentine, Anthony L ; Norwood, Robert A</creator><creatorcontrib>Fard, Erfan M ; Long, Christopher M ; Lentine, Anthony L ; Norwood, Robert A ; Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)</creatorcontrib><description>Cryogenic environments make superconducting computing possible by reducing thermal noise, electrical resistance and heat dissipation. Heat generated by the electronics and thermal conductivity of electrical transmission lines to the outside world constitute two main sources of thermal load in such systems. As a result, higher data rates require additional transmission lines which come at an increasingly higher cooling power cost. Hybrid or monolithic integration of silicon photonics with the electronics can be the key to higher data rates and lower power costs in these systems. We present a 4-channel wavelength division multiplexing photonic integrated circuit (PIC) built from modulators in the AIM Photonics process development kit (PDK) that operate at 25 Gbps at room temperature and 10 Gbps at 40 K. We further demonstrate 2-channel operation for 20 Gbps aggregate data rate at 40 K using two different modulators/wavelengths, with the potential for higher aggregate bit rates by utilizing additional channels.</description><identifier>ISSN: 1094-4087</identifier><identifier>EISSN: 1094-4087</identifier><identifier>DOI: 10.1364/OE.404617</identifier><identifier>PMID: 33379676</identifier><language>eng</language><publisher>United States: Optical Society of America (OSA)</publisher><subject>ENGINEERING</subject><ispartof>Optics express, 2020-11, Vol.28 (24), p.35651-35662</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c347t-b94fe8caa07ec3850d1ca1c4e0c2de658695a83acf403235955c58b2ebbabf543</citedby><cites>FETCH-LOGICAL-c347t-b94fe8caa07ec3850d1ca1c4e0c2de658695a83acf403235955c58b2ebbabf543</cites><orcidid>0000-0003-0560-0737</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,315,783,787,888,27936,27937</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33379676$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/servlets/purl/1721609$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Fard, Erfan M</creatorcontrib><creatorcontrib>Long, Christopher M</creatorcontrib><creatorcontrib>Lentine, Anthony L</creatorcontrib><creatorcontrib>Norwood, Robert A</creatorcontrib><creatorcontrib>Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)</creatorcontrib><title>Cryogenic C-band wavelength division multiplexing system using an AIM Photonics Foundry process design kit</title><title>Optics express</title><addtitle>Opt Express</addtitle><description>Cryogenic environments make superconducting computing possible by reducing thermal noise, electrical resistance and heat dissipation. Heat generated by the electronics and thermal conductivity of electrical transmission lines to the outside world constitute two main sources of thermal load in such systems. As a result, higher data rates require additional transmission lines which come at an increasingly higher cooling power cost. Hybrid or monolithic integration of silicon photonics with the electronics can be the key to higher data rates and lower power costs in these systems. We present a 4-channel wavelength division multiplexing photonic integrated circuit (PIC) built from modulators in the AIM Photonics process development kit (PDK) that operate at 25 Gbps at room temperature and 10 Gbps at 40 K. We further demonstrate 2-channel operation for 20 Gbps aggregate data rate at 40 K using two different modulators/wavelengths, with the potential for higher aggregate bit rates by utilizing additional channels.</description><subject>ENGINEERING</subject><issn>1094-4087</issn><issn>1094-4087</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNpNkE1LxDAQQIMofh_8AxI86aGaNGnTHmVZP0BZD3oOaTrdjbbJ2klX999bWRVPMwOPx_AIOeHskotcXs2ml5LJnKstss9ZKRPJCrX9b98jB4ivjHGpSrVL9oQQqsxVvk9eJ_06zME7SydJZXxNP8wKWvDzuKC1Wzl0wdNuaKNbtvDp_JziGiN0dMDvw3h6ff9InxYhhlGC9CYMvu7XdNkHC4i0BnRzT99cPCI7jWkRjn_mIXm5mT5P7pKH2e395PohsUKqmFSlbKCwxjAFVhQZq7k13EpgNq0hz4q8zEwhjG0kE6nIyiyzWVGlUFWmajIpDsnZxhswOo3WRbALG7wHGzVXKc9ZOULnG2j8830AjLpzaKFtjYcwoE6lkrJUecpG9GKD2j4g9tDoZe860681Z_q7v55N9ab_yJ7-aIeqg_qP_A0uvgCHzYEG</recordid><startdate>20201123</startdate><enddate>20201123</enddate><creator>Fard, Erfan M</creator><creator>Long, Christopher M</creator><creator>Lentine, Anthony L</creator><creator>Norwood, Robert A</creator><general>Optical Society of America (OSA)</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>OIOZB</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0003-0560-0737</orcidid></search><sort><creationdate>20201123</creationdate><title>Cryogenic C-band wavelength division multiplexing system using an AIM Photonics Foundry process design kit</title><author>Fard, Erfan M ; Long, Christopher M ; Lentine, Anthony L ; Norwood, Robert A</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c347t-b94fe8caa07ec3850d1ca1c4e0c2de658695a83acf403235955c58b2ebbabf543</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>ENGINEERING</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fard, Erfan M</creatorcontrib><creatorcontrib>Long, Christopher M</creatorcontrib><creatorcontrib>Lentine, Anthony L</creatorcontrib><creatorcontrib>Norwood, Robert A</creatorcontrib><creatorcontrib>Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>Optics express</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fard, Erfan M</au><au>Long, Christopher M</au><au>Lentine, Anthony L</au><au>Norwood, Robert A</au><aucorp>Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Cryogenic C-band wavelength division multiplexing system using an AIM Photonics Foundry process design kit</atitle><jtitle>Optics express</jtitle><addtitle>Opt Express</addtitle><date>2020-11-23</date><risdate>2020</risdate><volume>28</volume><issue>24</issue><spage>35651</spage><epage>35662</epage><pages>35651-35662</pages><issn>1094-4087</issn><eissn>1094-4087</eissn><abstract>Cryogenic environments make superconducting computing possible by reducing thermal noise, electrical resistance and heat dissipation. Heat generated by the electronics and thermal conductivity of electrical transmission lines to the outside world constitute two main sources of thermal load in such systems. As a result, higher data rates require additional transmission lines which come at an increasingly higher cooling power cost. Hybrid or monolithic integration of silicon photonics with the electronics can be the key to higher data rates and lower power costs in these systems. We present a 4-channel wavelength division multiplexing photonic integrated circuit (PIC) built from modulators in the AIM Photonics process development kit (PDK) that operate at 25 Gbps at room temperature and 10 Gbps at 40 K. We further demonstrate 2-channel operation for 20 Gbps aggregate data rate at 40 K using two different modulators/wavelengths, with the potential for higher aggregate bit rates by utilizing additional channels.</abstract><cop>United States</cop><pub>Optical Society of America (OSA)</pub><pmid>33379676</pmid><doi>10.1364/OE.404617</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0003-0560-0737</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1094-4087
ispartof Optics express, 2020-11, Vol.28 (24), p.35651-35662
issn 1094-4087
1094-4087
language eng
recordid cdi_osti_scitechconnect_1721609
source EZB Electronic Journals Library
subjects ENGINEERING
title Cryogenic C-band wavelength division multiplexing system using an AIM Photonics Foundry process design kit
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-11-15T19%3A03%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Cryogenic%20C-band%20wavelength%20division%20multiplexing%20system%20using%20an%20AIM%20Photonics%20Foundry%20process%20design%20kit&rft.jtitle=Optics%20express&rft.au=Fard,%20Erfan%20M&rft.aucorp=Sandia%20National%20Lab.%20(SNL-NM),%20Albuquerque,%20NM%20(United%20States)&rft.date=2020-11-23&rft.volume=28&rft.issue=24&rft.spage=35651&rft.epage=35662&rft.pages=35651-35662&rft.issn=1094-4087&rft.eissn=1094-4087&rft_id=info:doi/10.1364/OE.404617&rft_dat=%3Cproquest_osti_%3E2474497620%3C/proquest_osti_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c347t-b94fe8caa07ec3850d1ca1c4e0c2de658695a83acf403235955c58b2ebbabf543%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2474497620&rft_id=info:pmid/33379676&rfr_iscdi=true