Loading…

A Highly Reversible, Dendrite‐Free Lithium Metal Anode Enabled by a Lithium‐Fluoride‐Enriched Interphase

Metallic lithium is the most competitive anode material for next‐generation lithium (Li)‐ion batteries. However, one of its major issues is Li dendrite growth and detachment, which not only causes safety issues, but also continuously consumes electrolyte and Li, leading to low coulombic efficiency (...

Full description

Saved in:
Bibliographic Details
Published in:Advanced materials (Weinheim) 2020-03, Vol.32 (12), p.e1906427-n/a
Main Authors: Cui, Chunyu, Yang, Chongyin, Eidson, Nico, Chen, Ji, Han, Fudong, Chen, Long, Luo, Chao, Wang, Peng‐Fei, Fan, Xiulin, Wang, Chunsheng
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c4797-dde2c3e3ca51dbf4cb486f1e26b23158d197694bfb1ec82e86c3659d4185d8f13
cites cdi_FETCH-LOGICAL-c4797-dde2c3e3ca51dbf4cb486f1e26b23158d197694bfb1ec82e86c3659d4185d8f13
container_end_page n/a
container_issue 12
container_start_page e1906427
container_title Advanced materials (Weinheim)
container_volume 32
creator Cui, Chunyu
Yang, Chongyin
Eidson, Nico
Chen, Ji
Han, Fudong
Chen, Long
Luo, Chao
Wang, Peng‐Fei
Fan, Xiulin
Wang, Chunsheng
description Metallic lithium is the most competitive anode material for next‐generation lithium (Li)‐ion batteries. However, one of its major issues is Li dendrite growth and detachment, which not only causes safety issues, but also continuously consumes electrolyte and Li, leading to low coulombic efficiency (CE) and short cycle life for Li metal batteries. Herein, the Li dendrite growth of metallic lithium anode is suppressed by forming a lithium fluoride (LiF)‐enriched solid electrolyte interphase (SEI) through the lithiation of surface‐fluorinated mesocarbon microbeads (MCMB‐F) anodes. The robust LiF‐enriched SEI with high interfacial energy to Li metal effectively promotes planar growth of Li metal on the Li surface and meanwhile prevents its vertical penetration into the LiF‐enriched SEI from forming Li dendrites. At a discharge capacity of 1.2 mAh cm−2, a high CE of >99.2% for Li plating/stripping in FEC‐based electrolyte is achieved within 25 cycles. Coupling the pre‐lithiated MCMB‐F (Li@MCMB‐F) anode with a commercial LiFePO4 cathode at the positive/negative (P/N) capacity ratio of 1:1, the LiFePO4//Li@MCMB‐F cells can be charged/discharged at a high areal capacity of 2.4 mAh cm−2 for 110 times at a negligible capacity decay of 0.01% per cycle. A dendrite‐free lithium (Li) metal anode for Li metal batteries (LMBs) is realized by using surface‐fluorinated mesocarbon microbeads (MCMB‐F) as substrate. During the lithiation process, the fluorinated graphite on the outermost surface of MCMB‐F is reduced in situ to form a robust lithium‐fluoride‐enriched solid electrolyte interphase, providing an efficient avenue for LMBs with high Li metal coulombic efficiency and no Li dendrite growth.
doi_str_mv 10.1002/adma.201906427
format article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1599685</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2355953378</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4797-dde2c3e3ca51dbf4cb486f1e26b23158d197694bfb1ec82e86c3659d4185d8f13</originalsourceid><addsrcrecordid>eNqF0c9u1DAQBnALUdGl5coRRXDpodn6T-zYx6jd0kpbISE4W449Ia4SZ7ET0N54hD4jT0KibYvEhdNcfvONRh9CbwleE4zphXG9WVNMFBYFLV-gFeGU5AVW_CVaYcV4rkQhj9HrlO4xxkpg8QodM4q5FAVfoVBlN_5b2-2zz_ADYvJ1B-fZFQQX_Qi_fz1cR4Bs68fWT312B6PpsioMDrJNMLN1Wb3PzBNYfDcN0btldROit-1MbsMIcdeaBKfoqDFdgjeP8wR9vd58ubzJt58-3l5W29wWpSpz54BaBswaTlzdFLYupGgIUFFTRrh0RJVCFXVTE7CSghSWCa5cQSR3siHsBL0_5A5p9DrZ-Rfb2iEEsKMmXCkh-YzODmgXh-8TpFH3PlnoOhNgmJKmjHPFGSvlTD_8Q--HKYb5hVlJoiTj5XJ1fVA2DilFaPQu-t7EvSZYL3XppS79XNe88O4xdqp7cM_8qZ8ZqAP46TvY_ydOV1d31d_wP7WIoyE</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2381983571</pqid></control><display><type>article</type><title>A Highly Reversible, Dendrite‐Free Lithium Metal Anode Enabled by a Lithium‐Fluoride‐Enriched Interphase</title><source>Wiley-Blackwell Journals</source><creator>Cui, Chunyu ; Yang, Chongyin ; Eidson, Nico ; Chen, Ji ; Han, Fudong ; Chen, Long ; Luo, Chao ; Wang, Peng‐Fei ; Fan, Xiulin ; Wang, Chunsheng</creator><creatorcontrib>Cui, Chunyu ; Yang, Chongyin ; Eidson, Nico ; Chen, Ji ; Han, Fudong ; Chen, Long ; Luo, Chao ; Wang, Peng‐Fei ; Fan, Xiulin ; Wang, Chunsheng</creatorcontrib><description>Metallic lithium is the most competitive anode material for next‐generation lithium (Li)‐ion batteries. However, one of its major issues is Li dendrite growth and detachment, which not only causes safety issues, but also continuously consumes electrolyte and Li, leading to low coulombic efficiency (CE) and short cycle life for Li metal batteries. Herein, the Li dendrite growth of metallic lithium anode is suppressed by forming a lithium fluoride (LiF)‐enriched solid electrolyte interphase (SEI) through the lithiation of surface‐fluorinated mesocarbon microbeads (MCMB‐F) anodes. The robust LiF‐enriched SEI with high interfacial energy to Li metal effectively promotes planar growth of Li metal on the Li surface and meanwhile prevents its vertical penetration into the LiF‐enriched SEI from forming Li dendrites. At a discharge capacity of 1.2 mAh cm−2, a high CE of &gt;99.2% for Li plating/stripping in FEC‐based electrolyte is achieved within 25 cycles. Coupling the pre‐lithiated MCMB‐F (Li@MCMB‐F) anode with a commercial LiFePO4 cathode at the positive/negative (P/N) capacity ratio of 1:1, the LiFePO4//Li@MCMB‐F cells can be charged/discharged at a high areal capacity of 2.4 mAh cm−2 for 110 times at a negligible capacity decay of 0.01% per cycle. A dendrite‐free lithium (Li) metal anode for Li metal batteries (LMBs) is realized by using surface‐fluorinated mesocarbon microbeads (MCMB‐F) as substrate. During the lithiation process, the fluorinated graphite on the outermost surface of MCMB‐F is reduced in situ to form a robust lithium‐fluoride‐enriched solid electrolyte interphase, providing an efficient avenue for LMBs with high Li metal coulombic efficiency and no Li dendrite growth.</description><identifier>ISSN: 0935-9648</identifier><identifier>EISSN: 1521-4095</identifier><identifier>DOI: 10.1002/adma.201906427</identifier><identifier>PMID: 32058645</identifier><language>eng</language><publisher>Germany: Wiley Subscription Services, Inc</publisher><subject>Anodes ; Competitive materials ; Decay rate ; dendrite‐free Li plating ; Dendritic structure ; Discharge ; Electrode materials ; Electrolytes ; Electrolytic cells ; Enrichment ; Fluorides ; high coulombic efficiency ; Interfacial energy ; Li metal batteries ; LiF‐enriched solid electrolyte interphase ; Lithium ; Lithium fluoride ; Materials science ; Nanoparticles ; Solid electrolytes ; surface fluorinated graphite ; Vertical penetration</subject><ispartof>Advanced materials (Weinheim), 2020-03, Vol.32 (12), p.e1906427-n/a</ispartof><rights>2020 WILEY‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><rights>2020 WILEY-VCH Verlag GmbH &amp; Co. KGaA, Weinheim.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4797-dde2c3e3ca51dbf4cb486f1e26b23158d197694bfb1ec82e86c3659d4185d8f13</citedby><cites>FETCH-LOGICAL-c4797-dde2c3e3ca51dbf4cb486f1e26b23158d197694bfb1ec82e86c3659d4185d8f13</cites><orcidid>0000-0002-8626-6381 ; 0000000286266381</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fadma.201906427$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fadma.201906427$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>230,315,786,790,891,27957,27958,50923,51032</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32058645$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/1599685$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Cui, Chunyu</creatorcontrib><creatorcontrib>Yang, Chongyin</creatorcontrib><creatorcontrib>Eidson, Nico</creatorcontrib><creatorcontrib>Chen, Ji</creatorcontrib><creatorcontrib>Han, Fudong</creatorcontrib><creatorcontrib>Chen, Long</creatorcontrib><creatorcontrib>Luo, Chao</creatorcontrib><creatorcontrib>Wang, Peng‐Fei</creatorcontrib><creatorcontrib>Fan, Xiulin</creatorcontrib><creatorcontrib>Wang, Chunsheng</creatorcontrib><title>A Highly Reversible, Dendrite‐Free Lithium Metal Anode Enabled by a Lithium‐Fluoride‐Enriched Interphase</title><title>Advanced materials (Weinheim)</title><addtitle>Adv Mater</addtitle><description>Metallic lithium is the most competitive anode material for next‐generation lithium (Li)‐ion batteries. However, one of its major issues is Li dendrite growth and detachment, which not only causes safety issues, but also continuously consumes electrolyte and Li, leading to low coulombic efficiency (CE) and short cycle life for Li metal batteries. Herein, the Li dendrite growth of metallic lithium anode is suppressed by forming a lithium fluoride (LiF)‐enriched solid electrolyte interphase (SEI) through the lithiation of surface‐fluorinated mesocarbon microbeads (MCMB‐F) anodes. The robust LiF‐enriched SEI with high interfacial energy to Li metal effectively promotes planar growth of Li metal on the Li surface and meanwhile prevents its vertical penetration into the LiF‐enriched SEI from forming Li dendrites. At a discharge capacity of 1.2 mAh cm−2, a high CE of &gt;99.2% for Li plating/stripping in FEC‐based electrolyte is achieved within 25 cycles. Coupling the pre‐lithiated MCMB‐F (Li@MCMB‐F) anode with a commercial LiFePO4 cathode at the positive/negative (P/N) capacity ratio of 1:1, the LiFePO4//Li@MCMB‐F cells can be charged/discharged at a high areal capacity of 2.4 mAh cm−2 for 110 times at a negligible capacity decay of 0.01% per cycle. A dendrite‐free lithium (Li) metal anode for Li metal batteries (LMBs) is realized by using surface‐fluorinated mesocarbon microbeads (MCMB‐F) as substrate. During the lithiation process, the fluorinated graphite on the outermost surface of MCMB‐F is reduced in situ to form a robust lithium‐fluoride‐enriched solid electrolyte interphase, providing an efficient avenue for LMBs with high Li metal coulombic efficiency and no Li dendrite growth.</description><subject>Anodes</subject><subject>Competitive materials</subject><subject>Decay rate</subject><subject>dendrite‐free Li plating</subject><subject>Dendritic structure</subject><subject>Discharge</subject><subject>Electrode materials</subject><subject>Electrolytes</subject><subject>Electrolytic cells</subject><subject>Enrichment</subject><subject>Fluorides</subject><subject>high coulombic efficiency</subject><subject>Interfacial energy</subject><subject>Li metal batteries</subject><subject>LiF‐enriched solid electrolyte interphase</subject><subject>Lithium</subject><subject>Lithium fluoride</subject><subject>Materials science</subject><subject>Nanoparticles</subject><subject>Solid electrolytes</subject><subject>surface fluorinated graphite</subject><subject>Vertical penetration</subject><issn>0935-9648</issn><issn>1521-4095</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNqF0c9u1DAQBnALUdGl5coRRXDpodn6T-zYx6jd0kpbISE4W449Ia4SZ7ET0N54hD4jT0KibYvEhdNcfvONRh9CbwleE4zphXG9WVNMFBYFLV-gFeGU5AVW_CVaYcV4rkQhj9HrlO4xxkpg8QodM4q5FAVfoVBlN_5b2-2zz_ADYvJ1B-fZFQQX_Qi_fz1cR4Bs68fWT312B6PpsioMDrJNMLN1Wb3PzBNYfDcN0btldROit-1MbsMIcdeaBKfoqDFdgjeP8wR9vd58ubzJt58-3l5W29wWpSpz54BaBswaTlzdFLYupGgIUFFTRrh0RJVCFXVTE7CSghSWCa5cQSR3siHsBL0_5A5p9DrZ-Rfb2iEEsKMmXCkh-YzODmgXh-8TpFH3PlnoOhNgmJKmjHPFGSvlTD_8Q--HKYb5hVlJoiTj5XJ1fVA2DilFaPQu-t7EvSZYL3XppS79XNe88O4xdqp7cM_8qZ8ZqAP46TvY_ydOV1d31d_wP7WIoyE</recordid><startdate>20200301</startdate><enddate>20200301</enddate><creator>Cui, Chunyu</creator><creator>Yang, Chongyin</creator><creator>Eidson, Nico</creator><creator>Chen, Ji</creator><creator>Han, Fudong</creator><creator>Chen, Long</creator><creator>Luo, Chao</creator><creator>Wang, Peng‐Fei</creator><creator>Fan, Xiulin</creator><creator>Wang, Chunsheng</creator><general>Wiley Subscription Services, Inc</general><general>Wiley Blackwell (John Wiley &amp; Sons)</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>7X8</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0002-8626-6381</orcidid><orcidid>https://orcid.org/0000000286266381</orcidid></search><sort><creationdate>20200301</creationdate><title>A Highly Reversible, Dendrite‐Free Lithium Metal Anode Enabled by a Lithium‐Fluoride‐Enriched Interphase</title><author>Cui, Chunyu ; Yang, Chongyin ; Eidson, Nico ; Chen, Ji ; Han, Fudong ; Chen, Long ; Luo, Chao ; Wang, Peng‐Fei ; Fan, Xiulin ; Wang, Chunsheng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4797-dde2c3e3ca51dbf4cb486f1e26b23158d197694bfb1ec82e86c3659d4185d8f13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Anodes</topic><topic>Competitive materials</topic><topic>Decay rate</topic><topic>dendrite‐free Li plating</topic><topic>Dendritic structure</topic><topic>Discharge</topic><topic>Electrode materials</topic><topic>Electrolytes</topic><topic>Electrolytic cells</topic><topic>Enrichment</topic><topic>Fluorides</topic><topic>high coulombic efficiency</topic><topic>Interfacial energy</topic><topic>Li metal batteries</topic><topic>LiF‐enriched solid electrolyte interphase</topic><topic>Lithium</topic><topic>Lithium fluoride</topic><topic>Materials science</topic><topic>Nanoparticles</topic><topic>Solid electrolytes</topic><topic>surface fluorinated graphite</topic><topic>Vertical penetration</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cui, Chunyu</creatorcontrib><creatorcontrib>Yang, Chongyin</creatorcontrib><creatorcontrib>Eidson, Nico</creatorcontrib><creatorcontrib>Chen, Ji</creatorcontrib><creatorcontrib>Han, Fudong</creatorcontrib><creatorcontrib>Chen, Long</creatorcontrib><creatorcontrib>Luo, Chao</creatorcontrib><creatorcontrib>Wang, Peng‐Fei</creatorcontrib><creatorcontrib>Fan, Xiulin</creatorcontrib><creatorcontrib>Wang, Chunsheng</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV</collection><jtitle>Advanced materials (Weinheim)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cui, Chunyu</au><au>Yang, Chongyin</au><au>Eidson, Nico</au><au>Chen, Ji</au><au>Han, Fudong</au><au>Chen, Long</au><au>Luo, Chao</au><au>Wang, Peng‐Fei</au><au>Fan, Xiulin</au><au>Wang, Chunsheng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Highly Reversible, Dendrite‐Free Lithium Metal Anode Enabled by a Lithium‐Fluoride‐Enriched Interphase</atitle><jtitle>Advanced materials (Weinheim)</jtitle><addtitle>Adv Mater</addtitle><date>2020-03-01</date><risdate>2020</risdate><volume>32</volume><issue>12</issue><spage>e1906427</spage><epage>n/a</epage><pages>e1906427-n/a</pages><issn>0935-9648</issn><eissn>1521-4095</eissn><notes>ObjectType-Article-1</notes><notes>SourceType-Scholarly Journals-1</notes><notes>ObjectType-Feature-2</notes><notes>content type line 23</notes><notes>USDOE</notes><notes>DE‐EE0008200</notes><abstract>Metallic lithium is the most competitive anode material for next‐generation lithium (Li)‐ion batteries. However, one of its major issues is Li dendrite growth and detachment, which not only causes safety issues, but also continuously consumes electrolyte and Li, leading to low coulombic efficiency (CE) and short cycle life for Li metal batteries. Herein, the Li dendrite growth of metallic lithium anode is suppressed by forming a lithium fluoride (LiF)‐enriched solid electrolyte interphase (SEI) through the lithiation of surface‐fluorinated mesocarbon microbeads (MCMB‐F) anodes. The robust LiF‐enriched SEI with high interfacial energy to Li metal effectively promotes planar growth of Li metal on the Li surface and meanwhile prevents its vertical penetration into the LiF‐enriched SEI from forming Li dendrites. At a discharge capacity of 1.2 mAh cm−2, a high CE of &gt;99.2% for Li plating/stripping in FEC‐based electrolyte is achieved within 25 cycles. Coupling the pre‐lithiated MCMB‐F (Li@MCMB‐F) anode with a commercial LiFePO4 cathode at the positive/negative (P/N) capacity ratio of 1:1, the LiFePO4//Li@MCMB‐F cells can be charged/discharged at a high areal capacity of 2.4 mAh cm−2 for 110 times at a negligible capacity decay of 0.01% per cycle. A dendrite‐free lithium (Li) metal anode for Li metal batteries (LMBs) is realized by using surface‐fluorinated mesocarbon microbeads (MCMB‐F) as substrate. During the lithiation process, the fluorinated graphite on the outermost surface of MCMB‐F is reduced in situ to form a robust lithium‐fluoride‐enriched solid electrolyte interphase, providing an efficient avenue for LMBs with high Li metal coulombic efficiency and no Li dendrite growth.</abstract><cop>Germany</cop><pub>Wiley Subscription Services, Inc</pub><pmid>32058645</pmid><doi>10.1002/adma.201906427</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-8626-6381</orcidid><orcidid>https://orcid.org/0000000286266381</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0935-9648
ispartof Advanced materials (Weinheim), 2020-03, Vol.32 (12), p.e1906427-n/a
issn 0935-9648
1521-4095
language eng
recordid cdi_osti_scitechconnect_1599685
source Wiley-Blackwell Journals
subjects Anodes
Competitive materials
Decay rate
dendrite‐free Li plating
Dendritic structure
Discharge
Electrode materials
Electrolytes
Electrolytic cells
Enrichment
Fluorides
high coulombic efficiency
Interfacial energy
Li metal batteries
LiF‐enriched solid electrolyte interphase
Lithium
Lithium fluoride
Materials science
Nanoparticles
Solid electrolytes
surface fluorinated graphite
Vertical penetration
title A Highly Reversible, Dendrite‐Free Lithium Metal Anode Enabled by a Lithium‐Fluoride‐Enriched Interphase
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-09-21T12%3A38%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Highly%20Reversible,%20Dendrite%E2%80%90Free%20Lithium%20Metal%20Anode%20Enabled%20by%20a%20Lithium%E2%80%90Fluoride%E2%80%90Enriched%20Interphase&rft.jtitle=Advanced%20materials%20(Weinheim)&rft.au=Cui,%20Chunyu&rft.date=2020-03-01&rft.volume=32&rft.issue=12&rft.spage=e1906427&rft.epage=n/a&rft.pages=e1906427-n/a&rft.issn=0935-9648&rft.eissn=1521-4095&rft_id=info:doi/10.1002/adma.201906427&rft_dat=%3Cproquest_osti_%3E2355953378%3C/proquest_osti_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c4797-dde2c3e3ca51dbf4cb486f1e26b23158d197694bfb1ec82e86c3659d4185d8f13%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2381983571&rft_id=info:pmid/32058645&rfr_iscdi=true