Loading…

Ion‐Conductive, Viscosity‐Tunable Hexagonal Boron Nitride Nanosheet Inks

Liquid‐phase exfoliation of layered solids holds promise for the scalable production of 2D nanosheets. When combined with suitable solvents and stabilizing polymers, the rheology of the resulting nanosheet dispersions can be tuned for a variety of additive manufacturing methods. While significant pr...

Full description

Saved in:
Bibliographic Details
Published in:Advanced functional materials 2019-09, Vol.29 (39), p.n/a
Main Authors: Moraes, Ana C. M., Hyun, Woo Jin, Seo, Jung‐Woo T., Downing, Julia R., Lim, Jin‐Myoung, Hersam, Mark C.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c4175-aba470f53c491e4c1990760a0b4a184e251e4c1bed7600be77c7d275f760b9153
cites cdi_FETCH-LOGICAL-c4175-aba470f53c491e4c1990760a0b4a184e251e4c1bed7600be77c7d275f760b9153
container_end_page n/a
container_issue 39
container_start_page
container_title Advanced functional materials
container_volume 29
creator Moraes, Ana C. M.
Hyun, Woo Jin
Seo, Jung‐Woo T.
Downing, Julia R.
Lim, Jin‐Myoung
Hersam, Mark C.
description Liquid‐phase exfoliation of layered solids holds promise for the scalable production of 2D nanosheets. When combined with suitable solvents and stabilizing polymers, the rheology of the resulting nanosheet dispersions can be tuned for a variety of additive manufacturing methods. While significant progress is made in the development of electrically conductive nanosheet inks, minimal effort is applied to ion‐conductive nanosheet inks despite their central role in energy storage applications. Here, the formulation of viscosity‐tunable hexagonal boron nitride (hBN) inks compatible with a wide range of printing methods that span the spectrum from low‐viscosity inkjet printing to high‐viscosity blade coating is demonstrated. The inks are prepared by liquid‐phase exfoliation with ethyl cellulose as the polymer dispersant and stabilizer. Thermal annealing of the printed structures volatilizes the polymer, resulting in a porous microstructure and the formation of a nanoscale carbonaceous coating on the hBN nanosheets, which promotes high wettability to battery electrolytes. The final result is a printed hBN nanosheet film that possesses high ionic conductivity, chemical and thermal stability, and electrically insulating character, which are ideal characteristics for printable battery components such as separators. Indeed, lithium‐ion battery cells based on printed hBN separators reveal enhanced electrochemical performance that exceeds commercial polymer separators. Ion‐conductive and viscosity‐tunable hexagonal boron nitride (hBN) inks are prepared by liquid‐phase exfoliation of hBN nanosheets using cellulosic polymers as dispersants and stabilizers. The hBN inks are compatible with inkjet printing and blade coating, resulting in hBN films with high ionic conductivity and thermal stability that outperform commercial polymer separators in lithium‐ion batteries.
doi_str_mv 10.1002/adfm.201902245
format article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1546093</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2295332024</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4175-aba470f53c491e4c1990760a0b4a184e251e4c1bed7600be77c7d275f760b9153</originalsourceid><addsrcrecordid>eNqFkLFOwzAURS0EEqWwMkewkmI7TlyPpVBaqZSlIDbLcRzqktpgO0A3PoFv5EtICSoj03vv6twn3QvAMYI9BCE-F0W56mGIGMSYpDuggzKUxQnE_d3tjh72wYH3SwgRpQnpgOnEmq-Pz6E1RS2DflVn0b320nod1o0-r43IKxWN1bt4tEZU0YV11kQzHZwuVDQTxvqFUiGamCd_CPZKUXl19Du74G50NR-O4-nt9WQ4mMaSIJrGIheEwjJNJGFIEYkYgzSDAuZEoD5ROP1Rc1U0KswVpZIWmKZlc-YMpUkXnLR_rQ-ae6mDkgtpjVEycJSSDLKkgU5b6NnZl1r5wJe2dk0EzzFmaZJgiElD9VpKOuu9UyV_dnol3JojyDe18k2tfFtrY2Ct4U1Xav0PzQeXo5s_7zfa43xN</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2295332024</pqid></control><display><type>article</type><title>Ion‐Conductive, Viscosity‐Tunable Hexagonal Boron Nitride Nanosheet Inks</title><source>Wiley Online Library</source><creator>Moraes, Ana C. M. ; Hyun, Woo Jin ; Seo, Jung‐Woo T. ; Downing, Julia R. ; Lim, Jin‐Myoung ; Hersam, Mark C.</creator><creatorcontrib>Moraes, Ana C. M. ; Hyun, Woo Jin ; Seo, Jung‐Woo T. ; Downing, Julia R. ; Lim, Jin‐Myoung ; Hersam, Mark C.</creatorcontrib><description>Liquid‐phase exfoliation of layered solids holds promise for the scalable production of 2D nanosheets. When combined with suitable solvents and stabilizing polymers, the rheology of the resulting nanosheet dispersions can be tuned for a variety of additive manufacturing methods. While significant progress is made in the development of electrically conductive nanosheet inks, minimal effort is applied to ion‐conductive nanosheet inks despite their central role in energy storage applications. Here, the formulation of viscosity‐tunable hexagonal boron nitride (hBN) inks compatible with a wide range of printing methods that span the spectrum from low‐viscosity inkjet printing to high‐viscosity blade coating is demonstrated. The inks are prepared by liquid‐phase exfoliation with ethyl cellulose as the polymer dispersant and stabilizer. Thermal annealing of the printed structures volatilizes the polymer, resulting in a porous microstructure and the formation of a nanoscale carbonaceous coating on the hBN nanosheets, which promotes high wettability to battery electrolytes. The final result is a printed hBN nanosheet film that possesses high ionic conductivity, chemical and thermal stability, and electrically insulating character, which are ideal characteristics for printable battery components such as separators. Indeed, lithium‐ion battery cells based on printed hBN separators reveal enhanced electrochemical performance that exceeds commercial polymer separators. Ion‐conductive and viscosity‐tunable hexagonal boron nitride (hBN) inks are prepared by liquid‐phase exfoliation of hBN nanosheets using cellulosic polymers as dispersants and stabilizers. The hBN inks are compatible with inkjet printing and blade coating, resulting in hBN films with high ionic conductivity and thermal stability that outperform commercial polymer separators in lithium‐ion batteries.</description><identifier>ISSN: 1616-301X</identifier><identifier>EISSN: 1616-3028</identifier><identifier>DOI: 10.1002/adfm.201902245</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc</publisher><subject>Blade coating ; Boron nitride ; Dispersants ; Electrical resistivity ; Electrochemical analysis ; Electrolytes ; Electrolytic cells ; Energy storage ; Ethyl cellulose ; Exfoliation ; hBN ; Inkjet printing ; Inks ; Ion currents ; liquid‐phase exfoliation ; Lithium-ion batteries ; Materials science ; Nanosheets ; Organic chemistry ; Polymers ; Production methods ; Rheological properties ; Rheology ; Separators ; Thermal stability ; Viscosity ; Wettability</subject><ispartof>Advanced functional materials, 2019-09, Vol.29 (39), p.n/a</ispartof><rights>2019 WILEY‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4175-aba470f53c491e4c1990760a0b4a184e251e4c1bed7600be77c7d275f760b9153</citedby><cites>FETCH-LOGICAL-c4175-aba470f53c491e4c1990760a0b4a184e251e4c1bed7600be77c7d275f760b9153</cites><orcidid>0000-0003-4120-1426 ; 0000000341201426</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fadfm.201902245$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fadfm.201902245$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>230,315,786,790,891,27957,27958,50923,51032</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/1546093$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Moraes, Ana C. M.</creatorcontrib><creatorcontrib>Hyun, Woo Jin</creatorcontrib><creatorcontrib>Seo, Jung‐Woo T.</creatorcontrib><creatorcontrib>Downing, Julia R.</creatorcontrib><creatorcontrib>Lim, Jin‐Myoung</creatorcontrib><creatorcontrib>Hersam, Mark C.</creatorcontrib><title>Ion‐Conductive, Viscosity‐Tunable Hexagonal Boron Nitride Nanosheet Inks</title><title>Advanced functional materials</title><description>Liquid‐phase exfoliation of layered solids holds promise for the scalable production of 2D nanosheets. When combined with suitable solvents and stabilizing polymers, the rheology of the resulting nanosheet dispersions can be tuned for a variety of additive manufacturing methods. While significant progress is made in the development of electrically conductive nanosheet inks, minimal effort is applied to ion‐conductive nanosheet inks despite their central role in energy storage applications. Here, the formulation of viscosity‐tunable hexagonal boron nitride (hBN) inks compatible with a wide range of printing methods that span the spectrum from low‐viscosity inkjet printing to high‐viscosity blade coating is demonstrated. The inks are prepared by liquid‐phase exfoliation with ethyl cellulose as the polymer dispersant and stabilizer. Thermal annealing of the printed structures volatilizes the polymer, resulting in a porous microstructure and the formation of a nanoscale carbonaceous coating on the hBN nanosheets, which promotes high wettability to battery electrolytes. The final result is a printed hBN nanosheet film that possesses high ionic conductivity, chemical and thermal stability, and electrically insulating character, which are ideal characteristics for printable battery components such as separators. Indeed, lithium‐ion battery cells based on printed hBN separators reveal enhanced electrochemical performance that exceeds commercial polymer separators. Ion‐conductive and viscosity‐tunable hexagonal boron nitride (hBN) inks are prepared by liquid‐phase exfoliation of hBN nanosheets using cellulosic polymers as dispersants and stabilizers. The hBN inks are compatible with inkjet printing and blade coating, resulting in hBN films with high ionic conductivity and thermal stability that outperform commercial polymer separators in lithium‐ion batteries.</description><subject>Blade coating</subject><subject>Boron nitride</subject><subject>Dispersants</subject><subject>Electrical resistivity</subject><subject>Electrochemical analysis</subject><subject>Electrolytes</subject><subject>Electrolytic cells</subject><subject>Energy storage</subject><subject>Ethyl cellulose</subject><subject>Exfoliation</subject><subject>hBN</subject><subject>Inkjet printing</subject><subject>Inks</subject><subject>Ion currents</subject><subject>liquid‐phase exfoliation</subject><subject>Lithium-ion batteries</subject><subject>Materials science</subject><subject>Nanosheets</subject><subject>Organic chemistry</subject><subject>Polymers</subject><subject>Production methods</subject><subject>Rheological properties</subject><subject>Rheology</subject><subject>Separators</subject><subject>Thermal stability</subject><subject>Viscosity</subject><subject>Wettability</subject><issn>1616-301X</issn><issn>1616-3028</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNqFkLFOwzAURS0EEqWwMkewkmI7TlyPpVBaqZSlIDbLcRzqktpgO0A3PoFv5EtICSoj03vv6twn3QvAMYI9BCE-F0W56mGIGMSYpDuggzKUxQnE_d3tjh72wYH3SwgRpQnpgOnEmq-Pz6E1RS2DflVn0b320nod1o0-r43IKxWN1bt4tEZU0YV11kQzHZwuVDQTxvqFUiGamCd_CPZKUXl19Du74G50NR-O4-nt9WQ4mMaSIJrGIheEwjJNJGFIEYkYgzSDAuZEoD5ROP1Rc1U0KswVpZIWmKZlc-YMpUkXnLR_rQ-ae6mDkgtpjVEycJSSDLKkgU5b6NnZl1r5wJe2dk0EzzFmaZJgiElD9VpKOuu9UyV_dnol3JojyDe18k2tfFtrY2Ct4U1Xav0PzQeXo5s_7zfa43xN</recordid><startdate>20190901</startdate><enddate>20190901</enddate><creator>Moraes, Ana C. M.</creator><creator>Hyun, Woo Jin</creator><creator>Seo, Jung‐Woo T.</creator><creator>Downing, Julia R.</creator><creator>Lim, Jin‐Myoung</creator><creator>Hersam, Mark C.</creator><general>Wiley Subscription Services, Inc</general><general>Wiley Blackwell (John Wiley &amp; Sons)</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0003-4120-1426</orcidid><orcidid>https://orcid.org/0000000341201426</orcidid></search><sort><creationdate>20190901</creationdate><title>Ion‐Conductive, Viscosity‐Tunable Hexagonal Boron Nitride Nanosheet Inks</title><author>Moraes, Ana C. M. ; Hyun, Woo Jin ; Seo, Jung‐Woo T. ; Downing, Julia R. ; Lim, Jin‐Myoung ; Hersam, Mark C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4175-aba470f53c491e4c1990760a0b4a184e251e4c1bed7600be77c7d275f760b9153</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Blade coating</topic><topic>Boron nitride</topic><topic>Dispersants</topic><topic>Electrical resistivity</topic><topic>Electrochemical analysis</topic><topic>Electrolytes</topic><topic>Electrolytic cells</topic><topic>Energy storage</topic><topic>Ethyl cellulose</topic><topic>Exfoliation</topic><topic>hBN</topic><topic>Inkjet printing</topic><topic>Inks</topic><topic>Ion currents</topic><topic>liquid‐phase exfoliation</topic><topic>Lithium-ion batteries</topic><topic>Materials science</topic><topic>Nanosheets</topic><topic>Organic chemistry</topic><topic>Polymers</topic><topic>Production methods</topic><topic>Rheological properties</topic><topic>Rheology</topic><topic>Separators</topic><topic>Thermal stability</topic><topic>Viscosity</topic><topic>Wettability</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Moraes, Ana C. M.</creatorcontrib><creatorcontrib>Hyun, Woo Jin</creatorcontrib><creatorcontrib>Seo, Jung‐Woo T.</creatorcontrib><creatorcontrib>Downing, Julia R.</creatorcontrib><creatorcontrib>Lim, Jin‐Myoung</creatorcontrib><creatorcontrib>Hersam, Mark C.</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>OSTI.GOV</collection><jtitle>Advanced functional materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Moraes, Ana C. M.</au><au>Hyun, Woo Jin</au><au>Seo, Jung‐Woo T.</au><au>Downing, Julia R.</au><au>Lim, Jin‐Myoung</au><au>Hersam, Mark C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Ion‐Conductive, Viscosity‐Tunable Hexagonal Boron Nitride Nanosheet Inks</atitle><jtitle>Advanced functional materials</jtitle><date>2019-09-01</date><risdate>2019</risdate><volume>29</volume><issue>39</issue><epage>n/a</epage><issn>1616-301X</issn><eissn>1616-3028</eissn><notes>USDOE Office of Science (SC), Basic Energy Sciences (BES)</notes><notes>DEAC02‐06CH1157</notes><abstract>Liquid‐phase exfoliation of layered solids holds promise for the scalable production of 2D nanosheets. When combined with suitable solvents and stabilizing polymers, the rheology of the resulting nanosheet dispersions can be tuned for a variety of additive manufacturing methods. While significant progress is made in the development of electrically conductive nanosheet inks, minimal effort is applied to ion‐conductive nanosheet inks despite their central role in energy storage applications. Here, the formulation of viscosity‐tunable hexagonal boron nitride (hBN) inks compatible with a wide range of printing methods that span the spectrum from low‐viscosity inkjet printing to high‐viscosity blade coating is demonstrated. The inks are prepared by liquid‐phase exfoliation with ethyl cellulose as the polymer dispersant and stabilizer. Thermal annealing of the printed structures volatilizes the polymer, resulting in a porous microstructure and the formation of a nanoscale carbonaceous coating on the hBN nanosheets, which promotes high wettability to battery electrolytes. The final result is a printed hBN nanosheet film that possesses high ionic conductivity, chemical and thermal stability, and electrically insulating character, which are ideal characteristics for printable battery components such as separators. Indeed, lithium‐ion battery cells based on printed hBN separators reveal enhanced electrochemical performance that exceeds commercial polymer separators. Ion‐conductive and viscosity‐tunable hexagonal boron nitride (hBN) inks are prepared by liquid‐phase exfoliation of hBN nanosheets using cellulosic polymers as dispersants and stabilizers. The hBN inks are compatible with inkjet printing and blade coating, resulting in hBN films with high ionic conductivity and thermal stability that outperform commercial polymer separators in lithium‐ion batteries.</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/adfm.201902245</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0003-4120-1426</orcidid><orcidid>https://orcid.org/0000000341201426</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1616-301X
ispartof Advanced functional materials, 2019-09, Vol.29 (39), p.n/a
issn 1616-301X
1616-3028
language eng
recordid cdi_osti_scitechconnect_1546093
source Wiley Online Library
subjects Blade coating
Boron nitride
Dispersants
Electrical resistivity
Electrochemical analysis
Electrolytes
Electrolytic cells
Energy storage
Ethyl cellulose
Exfoliation
hBN
Inkjet printing
Inks
Ion currents
liquid‐phase exfoliation
Lithium-ion batteries
Materials science
Nanosheets
Organic chemistry
Polymers
Production methods
Rheological properties
Rheology
Separators
Thermal stability
Viscosity
Wettability
title Ion‐Conductive, Viscosity‐Tunable Hexagonal Boron Nitride Nanosheet Inks
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-09-23T08%3A17%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Ion%E2%80%90Conductive,%20Viscosity%E2%80%90Tunable%20Hexagonal%20Boron%20Nitride%20Nanosheet%20Inks&rft.jtitle=Advanced%20functional%20materials&rft.au=Moraes,%20Ana%20C.%20M.&rft.date=2019-09-01&rft.volume=29&rft.issue=39&rft.epage=n/a&rft.issn=1616-301X&rft.eissn=1616-3028&rft_id=info:doi/10.1002/adfm.201902245&rft_dat=%3Cproquest_osti_%3E2295332024%3C/proquest_osti_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c4175-aba470f53c491e4c1990760a0b4a184e251e4c1bed7600be77c7d275f760b9153%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2295332024&rft_id=info:pmid/&rfr_iscdi=true