Loading…

Vertically Aligned MoS2/Mo2C hybrid Nanosheets Grown on Carbon Paper for Efficient Electrocatalytic Hydrogen Evolution

Maximizing and creating active sites has been a general strategy to increase the performance of a catalyst. Because of the high electrocatalytic hydrogen evolution reactivity (HER) of ultrafine Mo2C nanocrystals and edges of two-dimensional MoS2, an electrode with a synergistic integration of these...

Full description

Saved in:
Bibliographic Details
Published in:ACS catalysis 2017-10, Vol.7 (10), p.7312-7318
Main Authors: Zhao, Zhenhuan, Qin, Fan, Kasiraju, Sashank, Xie, Lixin, Alam, Md Kamrul, Chen, Shuo, Wang, Dezhi, Ren, Zhifeng, Wang, Zhiming, Grabow, Lars C, Bao, Jiming
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 7318
container_issue 10
container_start_page 7312
container_title ACS catalysis
container_volume 7
creator Zhao, Zhenhuan
Qin, Fan
Kasiraju, Sashank
Xie, Lixin
Alam, Md Kamrul
Chen, Shuo
Wang, Dezhi
Ren, Zhifeng
Wang, Zhiming
Grabow, Lars C
Bao, Jiming
description Maximizing and creating active sites has been a general strategy to increase the performance of a catalyst. Because of the high electrocatalytic hydrogen evolution reactivity (HER) of ultrafine Mo2C nanocrystals and edges of two-dimensional MoS2, an electrode with a synergistic integration of these two nanomaterials is expected to show a better HER performance. Here we report this hybrid nanostructure of vertically aligned MoS2/Mo2C nanosheets on conductive carbon paper. It was revealed that the original structure of MoS2 nanosheets remains intact after the carburization, but the surfaces are incorporated with either Mo2C nanodomains or a heteroatomic mixture of S and C. The hybrid catalyst exhibits a much lower HER overpotential in comparison to those of the corresponding Mo2C and MoS2 alone. Its high activity is congruent with DFT calculations, which show that multiple S and C coordinated Mo sites with near zero Gibbs free energy of hydrogen adsorption exist. Thus, the low overpotential of this binder-free hybrid catalyst is a result of active sites of Mo–S–C and highly dispersed Mo2C nanodomains on the original edges and basal planes of MoS2. Our prediction and realization of active HER sites with this hybrid two-dimensional nanostructure opens up a route toward the development of more active HER catalysts.
doi_str_mv 10.1021/acscatal.7b02885
format article
fullrecord <record><control><sourceid>acs_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1485445</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>a411457502</sourcerecordid><originalsourceid>FETCH-LOGICAL-a327t-281ac4ebfe60a3ac7992d7f1798ce1b2d6f6bc3d20723868d24ba7d513b24f413</originalsourceid><addsrcrecordid>eNpNkEtLw0AUhQdRsNTuXQ6uTZt5ZabLEmIrtCr42IZ5tilhRibTSv690Vbwbs5dHA4fHwC3KJ-iHKOZ1J2WSbZTrnIsBLsAI4wYyxgl7PLffw0mXbfPh6OsEDwfgeOHjanRsm17uGibrbcGbsIrnm0CLuGuV7Ex8En60O2sTR1cxvDlYfCwlFEN8SI_bYQuRFg51-jG-gSr1uoUwy9RP4zDVW9i2FoPq2NoD6kJ_gZcOdl2dnLOMXh_qN7KVbZ-Xj6Wi3UmCeYpwwJJTa1ytsglkZrP59hwh_hcaIsUNoUrlCYG5xwTUQiDqZLcMEQUpo4iMgZ3p93QpabudJOs3ung_UBYIyoYpWwo3Z9Kg8Z6Hw7RD0g1yusft_Wf2_rslnwDyhpviQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Vertically Aligned MoS2/Mo2C hybrid Nanosheets Grown on Carbon Paper for Efficient Electrocatalytic Hydrogen Evolution</title><source>American Chemical Society:Jisc Collections:American Chemical Society Read &amp; Publish Agreement 2022-2024 (Reading list)</source><creator>Zhao, Zhenhuan ; Qin, Fan ; Kasiraju, Sashank ; Xie, Lixin ; Alam, Md Kamrul ; Chen, Shuo ; Wang, Dezhi ; Ren, Zhifeng ; Wang, Zhiming ; Grabow, Lars C ; Bao, Jiming</creator><creatorcontrib>Zhao, Zhenhuan ; Qin, Fan ; Kasiraju, Sashank ; Xie, Lixin ; Alam, Md Kamrul ; Chen, Shuo ; Wang, Dezhi ; Ren, Zhifeng ; Wang, Zhiming ; Grabow, Lars C ; Bao, Jiming ; Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). National Energy Research Scientific Computing Center (NERSC)</creatorcontrib><description>Maximizing and creating active sites has been a general strategy to increase the performance of a catalyst. Because of the high electrocatalytic hydrogen evolution reactivity (HER) of ultrafine Mo2C nanocrystals and edges of two-dimensional MoS2, an electrode with a synergistic integration of these two nanomaterials is expected to show a better HER performance. Here we report this hybrid nanostructure of vertically aligned MoS2/Mo2C nanosheets on conductive carbon paper. It was revealed that the original structure of MoS2 nanosheets remains intact after the carburization, but the surfaces are incorporated with either Mo2C nanodomains or a heteroatomic mixture of S and C. The hybrid catalyst exhibits a much lower HER overpotential in comparison to those of the corresponding Mo2C and MoS2 alone. Its high activity is congruent with DFT calculations, which show that multiple S and C coordinated Mo sites with near zero Gibbs free energy of hydrogen adsorption exist. Thus, the low overpotential of this binder-free hybrid catalyst is a result of active sites of Mo–S–C and highly dispersed Mo2C nanodomains on the original edges and basal planes of MoS2. Our prediction and realization of active HER sites with this hybrid two-dimensional nanostructure opens up a route toward the development of more active HER catalysts.</description><identifier>ISSN: 2155-5435</identifier><identifier>EISSN: 2155-5435</identifier><identifier>DOI: 10.1021/acscatal.7b02885</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>carburization ; hybrid nanostructure ; hydrogen evolution reaction ; INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY ; Mo2C nanodomains ; Mo−S−C motifs ; vertical MoS2 nanosheets</subject><ispartof>ACS catalysis, 2017-10, Vol.7 (10), p.7312-7318</ispartof><rights>Copyright © 2017 American Chemical Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0002-6819-0117 ; 0000-0001-8233-3332 ; 0000-0002-7766-8856 ; 0000000182333332 ; 0000000277668856 ; 0000000268190117</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,315,786,790,891,27957,27958</link.rule.ids><backlink>$$Uhttps://www.osti.gov/servlets/purl/1485445$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhao, Zhenhuan</creatorcontrib><creatorcontrib>Qin, Fan</creatorcontrib><creatorcontrib>Kasiraju, Sashank</creatorcontrib><creatorcontrib>Xie, Lixin</creatorcontrib><creatorcontrib>Alam, Md Kamrul</creatorcontrib><creatorcontrib>Chen, Shuo</creatorcontrib><creatorcontrib>Wang, Dezhi</creatorcontrib><creatorcontrib>Ren, Zhifeng</creatorcontrib><creatorcontrib>Wang, Zhiming</creatorcontrib><creatorcontrib>Grabow, Lars C</creatorcontrib><creatorcontrib>Bao, Jiming</creatorcontrib><creatorcontrib>Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). National Energy Research Scientific Computing Center (NERSC)</creatorcontrib><title>Vertically Aligned MoS2/Mo2C hybrid Nanosheets Grown on Carbon Paper for Efficient Electrocatalytic Hydrogen Evolution</title><title>ACS catalysis</title><addtitle>ACS Catal</addtitle><description>Maximizing and creating active sites has been a general strategy to increase the performance of a catalyst. Because of the high electrocatalytic hydrogen evolution reactivity (HER) of ultrafine Mo2C nanocrystals and edges of two-dimensional MoS2, an electrode with a synergistic integration of these two nanomaterials is expected to show a better HER performance. Here we report this hybrid nanostructure of vertically aligned MoS2/Mo2C nanosheets on conductive carbon paper. It was revealed that the original structure of MoS2 nanosheets remains intact after the carburization, but the surfaces are incorporated with either Mo2C nanodomains or a heteroatomic mixture of S and C. The hybrid catalyst exhibits a much lower HER overpotential in comparison to those of the corresponding Mo2C and MoS2 alone. Its high activity is congruent with DFT calculations, which show that multiple S and C coordinated Mo sites with near zero Gibbs free energy of hydrogen adsorption exist. Thus, the low overpotential of this binder-free hybrid catalyst is a result of active sites of Mo–S–C and highly dispersed Mo2C nanodomains on the original edges and basal planes of MoS2. Our prediction and realization of active HER sites with this hybrid two-dimensional nanostructure opens up a route toward the development of more active HER catalysts.</description><subject>carburization</subject><subject>hybrid nanostructure</subject><subject>hydrogen evolution reaction</subject><subject>INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY</subject><subject>Mo2C nanodomains</subject><subject>Mo−S−C motifs</subject><subject>vertical MoS2 nanosheets</subject><issn>2155-5435</issn><issn>2155-5435</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNpNkEtLw0AUhQdRsNTuXQ6uTZt5ZabLEmIrtCr42IZ5tilhRibTSv690Vbwbs5dHA4fHwC3KJ-iHKOZ1J2WSbZTrnIsBLsAI4wYyxgl7PLffw0mXbfPh6OsEDwfgeOHjanRsm17uGibrbcGbsIrnm0CLuGuV7Ex8En60O2sTR1cxvDlYfCwlFEN8SI_bYQuRFg51-jG-gSr1uoUwy9RP4zDVW9i2FoPq2NoD6kJ_gZcOdl2dnLOMXh_qN7KVbZ-Xj6Wi3UmCeYpwwJJTa1ytsglkZrP59hwh_hcaIsUNoUrlCYG5xwTUQiDqZLcMEQUpo4iMgZ3p93QpabudJOs3ung_UBYIyoYpWwo3Z9Kg8Z6Hw7RD0g1yusft_Wf2_rslnwDyhpviQ</recordid><startdate>20171006</startdate><enddate>20171006</enddate><creator>Zhao, Zhenhuan</creator><creator>Qin, Fan</creator><creator>Kasiraju, Sashank</creator><creator>Xie, Lixin</creator><creator>Alam, Md Kamrul</creator><creator>Chen, Shuo</creator><creator>Wang, Dezhi</creator><creator>Ren, Zhifeng</creator><creator>Wang, Zhiming</creator><creator>Grabow, Lars C</creator><creator>Bao, Jiming</creator><general>American Chemical Society</general><general>American Chemical Society (ACS)</general><scope>OIOZB</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0002-6819-0117</orcidid><orcidid>https://orcid.org/0000-0001-8233-3332</orcidid><orcidid>https://orcid.org/0000-0002-7766-8856</orcidid><orcidid>https://orcid.org/0000000182333332</orcidid><orcidid>https://orcid.org/0000000277668856</orcidid><orcidid>https://orcid.org/0000000268190117</orcidid></search><sort><creationdate>20171006</creationdate><title>Vertically Aligned MoS2/Mo2C hybrid Nanosheets Grown on Carbon Paper for Efficient Electrocatalytic Hydrogen Evolution</title><author>Zhao, Zhenhuan ; Qin, Fan ; Kasiraju, Sashank ; Xie, Lixin ; Alam, Md Kamrul ; Chen, Shuo ; Wang, Dezhi ; Ren, Zhifeng ; Wang, Zhiming ; Grabow, Lars C ; Bao, Jiming</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a327t-281ac4ebfe60a3ac7992d7f1798ce1b2d6f6bc3d20723868d24ba7d513b24f413</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>carburization</topic><topic>hybrid nanostructure</topic><topic>hydrogen evolution reaction</topic><topic>INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY</topic><topic>Mo2C nanodomains</topic><topic>Mo−S−C motifs</topic><topic>vertical MoS2 nanosheets</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhao, Zhenhuan</creatorcontrib><creatorcontrib>Qin, Fan</creatorcontrib><creatorcontrib>Kasiraju, Sashank</creatorcontrib><creatorcontrib>Xie, Lixin</creatorcontrib><creatorcontrib>Alam, Md Kamrul</creatorcontrib><creatorcontrib>Chen, Shuo</creatorcontrib><creatorcontrib>Wang, Dezhi</creatorcontrib><creatorcontrib>Ren, Zhifeng</creatorcontrib><creatorcontrib>Wang, Zhiming</creatorcontrib><creatorcontrib>Grabow, Lars C</creatorcontrib><creatorcontrib>Bao, Jiming</creatorcontrib><creatorcontrib>Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). National Energy Research Scientific Computing Center (NERSC)</creatorcontrib><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>ACS catalysis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhao, Zhenhuan</au><au>Qin, Fan</au><au>Kasiraju, Sashank</au><au>Xie, Lixin</au><au>Alam, Md Kamrul</au><au>Chen, Shuo</au><au>Wang, Dezhi</au><au>Ren, Zhifeng</au><au>Wang, Zhiming</au><au>Grabow, Lars C</au><au>Bao, Jiming</au><aucorp>Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). National Energy Research Scientific Computing Center (NERSC)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Vertically Aligned MoS2/Mo2C hybrid Nanosheets Grown on Carbon Paper for Efficient Electrocatalytic Hydrogen Evolution</atitle><jtitle>ACS catalysis</jtitle><addtitle>ACS Catal</addtitle><date>2017-10-06</date><risdate>2017</risdate><volume>7</volume><issue>10</issue><spage>7312</spage><epage>7318</epage><pages>7312-7318</pages><issn>2155-5435</issn><eissn>2155-5435</eissn><notes>AC02-05CH11231</notes><notes>USDOE Office of Science (SC)</notes><notes>National Science Foundation (NSF)</notes><abstract>Maximizing and creating active sites has been a general strategy to increase the performance of a catalyst. Because of the high electrocatalytic hydrogen evolution reactivity (HER) of ultrafine Mo2C nanocrystals and edges of two-dimensional MoS2, an electrode with a synergistic integration of these two nanomaterials is expected to show a better HER performance. Here we report this hybrid nanostructure of vertically aligned MoS2/Mo2C nanosheets on conductive carbon paper. It was revealed that the original structure of MoS2 nanosheets remains intact after the carburization, but the surfaces are incorporated with either Mo2C nanodomains or a heteroatomic mixture of S and C. The hybrid catalyst exhibits a much lower HER overpotential in comparison to those of the corresponding Mo2C and MoS2 alone. Its high activity is congruent with DFT calculations, which show that multiple S and C coordinated Mo sites with near zero Gibbs free energy of hydrogen adsorption exist. Thus, the low overpotential of this binder-free hybrid catalyst is a result of active sites of Mo–S–C and highly dispersed Mo2C nanodomains on the original edges and basal planes of MoS2. Our prediction and realization of active HER sites with this hybrid two-dimensional nanostructure opens up a route toward the development of more active HER catalysts.</abstract><cop>United States</cop><pub>American Chemical Society</pub><doi>10.1021/acscatal.7b02885</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0002-6819-0117</orcidid><orcidid>https://orcid.org/0000-0001-8233-3332</orcidid><orcidid>https://orcid.org/0000-0002-7766-8856</orcidid><orcidid>https://orcid.org/0000000182333332</orcidid><orcidid>https://orcid.org/0000000277668856</orcidid><orcidid>https://orcid.org/0000000268190117</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2155-5435
ispartof ACS catalysis, 2017-10, Vol.7 (10), p.7312-7318
issn 2155-5435
2155-5435
language eng
recordid cdi_osti_scitechconnect_1485445
source American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list)
subjects carburization
hybrid nanostructure
hydrogen evolution reaction
INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY
Mo2C nanodomains
Mo−S−C motifs
vertical MoS2 nanosheets
title Vertically Aligned MoS2/Mo2C hybrid Nanosheets Grown on Carbon Paper for Efficient Electrocatalytic Hydrogen Evolution
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-09-22T04%3A41%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acs_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Vertically%20Aligned%20MoS2/Mo2C%20hybrid%20Nanosheets%20Grown%20on%20Carbon%20Paper%20for%20Efficient%20Electrocatalytic%20Hydrogen%20Evolution&rft.jtitle=ACS%20catalysis&rft.au=Zhao,%20Zhenhuan&rft.aucorp=Lawrence%20Berkeley%20National%20Lab.%20(LBNL),%20Berkeley,%20CA%20(United%20States).%20National%20Energy%20Research%20Scientific%20Computing%20Center%20(NERSC)&rft.date=2017-10-06&rft.volume=7&rft.issue=10&rft.spage=7312&rft.epage=7318&rft.pages=7312-7318&rft.issn=2155-5435&rft.eissn=2155-5435&rft_id=info:doi/10.1021/acscatal.7b02885&rft_dat=%3Cacs_osti_%3Ea411457502%3C/acs_osti_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a327t-281ac4ebfe60a3ac7992d7f1798ce1b2d6f6bc3d20723868d24ba7d513b24f413%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true