Loading…

Atomic scale study of polar Lomer–Cottrell and Hirth lock dislocation cores in CdTe

Dislocation cores have long dominated the electronic and optical behaviors of semiconductor devices and detailed atomic characterization is required to further explore their effects. Miniaturization of semiconductor devices to nanometre scale also puts emphasis on a material's mechanical proper...

Full description

Saved in:
Bibliographic Details
Published in:Acta crystallographica. Section A, Foundations and advances Foundations and advances, 2014-11, Vol.70 (6), p.524-531
Main Authors: Paulauskas, Tadas, Buurma, Christopher, Colegrove, Eric, Stafford, Brian, Guo, Zhao, Chan, Maria K. Y., Sun, Ce, Kim, Moon J., Sivananthan, Sivalingam, Klie, Robert F.
Format: Article
Language:English
Subjects:
Citations: Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c3831-934c1b116b5bb3f50515931e0bf86a6894a0d443c8a26863593ccc18431f77303
cites
container_end_page 531
container_issue 6
container_start_page 524
container_title Acta crystallographica. Section A, Foundations and advances
container_volume 70
creator Paulauskas, Tadas
Buurma, Christopher
Colegrove, Eric
Stafford, Brian
Guo, Zhao
Chan, Maria K. Y.
Sun, Ce
Kim, Moon J.
Sivananthan, Sivalingam
Klie, Robert F.
description Dislocation cores have long dominated the electronic and optical behaviors of semiconductor devices and detailed atomic characterization is required to further explore their effects. Miniaturization of semiconductor devices to nanometre scale also puts emphasis on a material's mechanical properties to withstand failure due to processing or operational stresses. Sessile junctions of dislocations provide barriers to propagation of mobile dislocations and may lead to work‐hardening. The sessile Lomer–Cottrell and Hirth lock dislocations, two stable lowest elastic energy stair‐rods, are studied in this paper. More specifically, using atomic resolution high‐angle annular dark‐field imaging and atomic‐column‐resolved X‐ray spectrum imaging in an aberration‐corrected scanning transmission electron microscope, dislocation core structures are examined in zinc‐blende CdTe. A procedure is outlined for atomic scale analysis of dislocation junctions which allows determination of their identity with specially tailored Burgers circuits and also formation mechanisms of the polar core structures based on Thompson's tetrahedron adapted to reactions of polar dislocations as they appear in CdTe and other zinc‐blende solids. Strain fields associated with the dislocations calculated via geometric phase analysis are found to be diffuse and free of `hot spots' that reflect compact structures and low elastic energy of the pure‐edge stair‐rods.
doi_str_mv 10.1107/S2053273314019639
format article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1391909</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1753536346</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3831-934c1b116b5bb3f50515931e0bf86a6894a0d443c8a26863593ccc18431f77303</originalsourceid><addsrcrecordid>eNqFkb1OwzAUhSMEEhX0AdgsWFgKvrmxE49VxZ-oxAAMTJbjOMIljYvtCHXjHXhDngRXZUAwMN2rc79zpaOTZUdAzwBoeX6fU4Z5iQgFBcFR7GSjjTTZaLs_9v1sHMKCUppsLOd0lD1Oo1taTYJWnSEhDs2auJasXKc8mbul8Z_vHzMXozddR1TfkGvr4zPpnH4hjQ1pqmhdT7TzJhDbk1nzYA6zvVZ1wYy_50H2eHnxMLuezO-ubmbT-URjhTARWGioAXjN6hpbRhkwgWBo3VZc8UoUijZFgbpSOa84pqPWGqoCoS1LpHiQHW__uhCtDNpGo5-163ujowQUIKhI0OkWWnn3OpgQ5dIGneKo3rghSCgZMuRY8ISe_EIXbvB9iiCBQylYWdIqUbCltHcheNPKlbdL5dcSqNwUIv8Ukjxi63mznVn_b5DTp2k-v2WpKvwClDaK5A</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1617957708</pqid></control><display><type>article</type><title>Atomic scale study of polar Lomer–Cottrell and Hirth lock dislocation cores in CdTe</title><source>Wiley</source><source>Alma/SFX Local Collection</source><creator>Paulauskas, Tadas ; Buurma, Christopher ; Colegrove, Eric ; Stafford, Brian ; Guo, Zhao ; Chan, Maria K. Y. ; Sun, Ce ; Kim, Moon J. ; Sivananthan, Sivalingam ; Klie, Robert F.</creator><creatorcontrib>Paulauskas, Tadas ; Buurma, Christopher ; Colegrove, Eric ; Stafford, Brian ; Guo, Zhao ; Chan, Maria K. Y. ; Sun, Ce ; Kim, Moon J. ; Sivananthan, Sivalingam ; Klie, Robert F. ; Argonne National Lab. (ANL), Argonne, IL (United States)</creatorcontrib><description>Dislocation cores have long dominated the electronic and optical behaviors of semiconductor devices and detailed atomic characterization is required to further explore their effects. Miniaturization of semiconductor devices to nanometre scale also puts emphasis on a material's mechanical properties to withstand failure due to processing or operational stresses. Sessile junctions of dislocations provide barriers to propagation of mobile dislocations and may lead to work‐hardening. The sessile Lomer–Cottrell and Hirth lock dislocations, two stable lowest elastic energy stair‐rods, are studied in this paper. More specifically, using atomic resolution high‐angle annular dark‐field imaging and atomic‐column‐resolved X‐ray spectrum imaging in an aberration‐corrected scanning transmission electron microscope, dislocation core structures are examined in zinc‐blende CdTe. A procedure is outlined for atomic scale analysis of dislocation junctions which allows determination of their identity with specially tailored Burgers circuits and also formation mechanisms of the polar core structures based on Thompson's tetrahedron adapted to reactions of polar dislocations as they appear in CdTe and other zinc‐blende solids. Strain fields associated with the dislocations calculated via geometric phase analysis are found to be diffuse and free of `hot spots' that reflect compact structures and low elastic energy of the pure‐edge stair‐rods.</description><identifier>ISSN: 2053-2733</identifier><identifier>ISSN: 0108-7673</identifier><identifier>EISSN: 2053-2733</identifier><identifier>DOI: 10.1107/S2053273314019639</identifier><language>eng</language><publisher>5 Abbey Square, Chester, Cheshire CH1 2HU, England: International Union of Crystallography</publisher><subject>Atomic structure ; Atoms &amp; subatomic particles ; Cadmium tellurides ; CdTe ; Crystallography ; dislocation cores ; Dislocation mobility ; Dislocations ; Electronics ; HAADF ; Hirth lock dislocations ; Imaging ; Locks ; Lomer-Cottrell dislocations ; Scanning electron microscopy ; Semiconductor devices ; Semiconductors ; stair-rod dislocations ; STEM ; XEDS</subject><ispartof>Acta crystallographica. Section A, Foundations and advances, 2014-11, Vol.70 (6), p.524-531</ispartof><rights>International Union of Crystallography, 2014</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3831-934c1b116b5bb3f50515931e0bf86a6894a0d443c8a26863593ccc18431f77303</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1107%2FS2053273314019639$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1107%2FS2053273314019639$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>230,315,786,790,891,27957,27958,50923,51032</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/1391909$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Paulauskas, Tadas</creatorcontrib><creatorcontrib>Buurma, Christopher</creatorcontrib><creatorcontrib>Colegrove, Eric</creatorcontrib><creatorcontrib>Stafford, Brian</creatorcontrib><creatorcontrib>Guo, Zhao</creatorcontrib><creatorcontrib>Chan, Maria K. Y.</creatorcontrib><creatorcontrib>Sun, Ce</creatorcontrib><creatorcontrib>Kim, Moon J.</creatorcontrib><creatorcontrib>Sivananthan, Sivalingam</creatorcontrib><creatorcontrib>Klie, Robert F.</creatorcontrib><creatorcontrib>Argonne National Lab. (ANL), Argonne, IL (United States)</creatorcontrib><title>Atomic scale study of polar Lomer–Cottrell and Hirth lock dislocation cores in CdTe</title><title>Acta crystallographica. Section A, Foundations and advances</title><description>Dislocation cores have long dominated the electronic and optical behaviors of semiconductor devices and detailed atomic characterization is required to further explore their effects. Miniaturization of semiconductor devices to nanometre scale also puts emphasis on a material's mechanical properties to withstand failure due to processing or operational stresses. Sessile junctions of dislocations provide barriers to propagation of mobile dislocations and may lead to work‐hardening. The sessile Lomer–Cottrell and Hirth lock dislocations, two stable lowest elastic energy stair‐rods, are studied in this paper. More specifically, using atomic resolution high‐angle annular dark‐field imaging and atomic‐column‐resolved X‐ray spectrum imaging in an aberration‐corrected scanning transmission electron microscope, dislocation core structures are examined in zinc‐blende CdTe. A procedure is outlined for atomic scale analysis of dislocation junctions which allows determination of their identity with specially tailored Burgers circuits and also formation mechanisms of the polar core structures based on Thompson's tetrahedron adapted to reactions of polar dislocations as they appear in CdTe and other zinc‐blende solids. Strain fields associated with the dislocations calculated via geometric phase analysis are found to be diffuse and free of `hot spots' that reflect compact structures and low elastic energy of the pure‐edge stair‐rods.</description><subject>Atomic structure</subject><subject>Atoms &amp; subatomic particles</subject><subject>Cadmium tellurides</subject><subject>CdTe</subject><subject>Crystallography</subject><subject>dislocation cores</subject><subject>Dislocation mobility</subject><subject>Dislocations</subject><subject>Electronics</subject><subject>HAADF</subject><subject>Hirth lock dislocations</subject><subject>Imaging</subject><subject>Locks</subject><subject>Lomer-Cottrell dislocations</subject><subject>Scanning electron microscopy</subject><subject>Semiconductor devices</subject><subject>Semiconductors</subject><subject>stair-rod dislocations</subject><subject>STEM</subject><subject>XEDS</subject><issn>2053-2733</issn><issn>0108-7673</issn><issn>2053-2733</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNqFkb1OwzAUhSMEEhX0AdgsWFgKvrmxE49VxZ-oxAAMTJbjOMIljYvtCHXjHXhDngRXZUAwMN2rc79zpaOTZUdAzwBoeX6fU4Z5iQgFBcFR7GSjjTTZaLs_9v1sHMKCUppsLOd0lD1Oo1taTYJWnSEhDs2auJasXKc8mbul8Z_vHzMXozddR1TfkGvr4zPpnH4hjQ1pqmhdT7TzJhDbk1nzYA6zvVZ1wYy_50H2eHnxMLuezO-ubmbT-URjhTARWGioAXjN6hpbRhkwgWBo3VZc8UoUijZFgbpSOa84pqPWGqoCoS1LpHiQHW__uhCtDNpGo5-163ujowQUIKhI0OkWWnn3OpgQ5dIGneKo3rghSCgZMuRY8ISe_EIXbvB9iiCBQylYWdIqUbCltHcheNPKlbdL5dcSqNwUIv8Ukjxi63mznVn_b5DTp2k-v2WpKvwClDaK5A</recordid><startdate>201411</startdate><enddate>201411</enddate><creator>Paulauskas, Tadas</creator><creator>Buurma, Christopher</creator><creator>Colegrove, Eric</creator><creator>Stafford, Brian</creator><creator>Guo, Zhao</creator><creator>Chan, Maria K. Y.</creator><creator>Sun, Ce</creator><creator>Kim, Moon J.</creator><creator>Sivananthan, Sivalingam</creator><creator>Klie, Robert F.</creator><general>International Union of Crystallography</general><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><scope>7QQ</scope><scope>OTOTI</scope></search><sort><creationdate>201411</creationdate><title>Atomic scale study of polar Lomer–Cottrell and Hirth lock dislocation cores in CdTe</title><author>Paulauskas, Tadas ; Buurma, Christopher ; Colegrove, Eric ; Stafford, Brian ; Guo, Zhao ; Chan, Maria K. Y. ; Sun, Ce ; Kim, Moon J. ; Sivananthan, Sivalingam ; Klie, Robert F.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3831-934c1b116b5bb3f50515931e0bf86a6894a0d443c8a26863593ccc18431f77303</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Atomic structure</topic><topic>Atoms &amp; subatomic particles</topic><topic>Cadmium tellurides</topic><topic>CdTe</topic><topic>Crystallography</topic><topic>dislocation cores</topic><topic>Dislocation mobility</topic><topic>Dislocations</topic><topic>Electronics</topic><topic>HAADF</topic><topic>Hirth lock dislocations</topic><topic>Imaging</topic><topic>Locks</topic><topic>Lomer-Cottrell dislocations</topic><topic>Scanning electron microscopy</topic><topic>Semiconductor devices</topic><topic>Semiconductors</topic><topic>stair-rod dislocations</topic><topic>STEM</topic><topic>XEDS</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Paulauskas, Tadas</creatorcontrib><creatorcontrib>Buurma, Christopher</creatorcontrib><creatorcontrib>Colegrove, Eric</creatorcontrib><creatorcontrib>Stafford, Brian</creatorcontrib><creatorcontrib>Guo, Zhao</creatorcontrib><creatorcontrib>Chan, Maria K. Y.</creatorcontrib><creatorcontrib>Sun, Ce</creatorcontrib><creatorcontrib>Kim, Moon J.</creatorcontrib><creatorcontrib>Sivananthan, Sivalingam</creatorcontrib><creatorcontrib>Klie, Robert F.</creatorcontrib><creatorcontrib>Argonne National Lab. (ANL), Argonne, IL (United States)</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Ceramic Abstracts</collection><collection>OSTI.GOV</collection><jtitle>Acta crystallographica. Section A, Foundations and advances</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Paulauskas, Tadas</au><au>Buurma, Christopher</au><au>Colegrove, Eric</au><au>Stafford, Brian</au><au>Guo, Zhao</au><au>Chan, Maria K. Y.</au><au>Sun, Ce</au><au>Kim, Moon J.</au><au>Sivananthan, Sivalingam</au><au>Klie, Robert F.</au><aucorp>Argonne National Lab. (ANL), Argonne, IL (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Atomic scale study of polar Lomer–Cottrell and Hirth lock dislocation cores in CdTe</atitle><jtitle>Acta crystallographica. Section A, Foundations and advances</jtitle><date>2014-11</date><risdate>2014</risdate><volume>70</volume><issue>6</issue><spage>524</spage><epage>531</epage><pages>524-531</pages><issn>2053-2733</issn><issn>0108-7673</issn><eissn>2053-2733</eissn><notes>ObjectType-Article-1</notes><notes>SourceType-Scholarly Journals-1</notes><notes>ObjectType-Feature-2</notes><notes>content type line 23</notes><notes>AC02-06CH11357</notes><notes>USDOE Office of Science - Office of Basic Energy Sciences - Scientific User Facilities Division</notes><notes>USDOE Office of Energy Efficiency and Renewable Energy (EERE) - Office of Solar Energy Technology (SETO) - SunShot Initiative</notes><abstract>Dislocation cores have long dominated the electronic and optical behaviors of semiconductor devices and detailed atomic characterization is required to further explore their effects. Miniaturization of semiconductor devices to nanometre scale also puts emphasis on a material's mechanical properties to withstand failure due to processing or operational stresses. Sessile junctions of dislocations provide barriers to propagation of mobile dislocations and may lead to work‐hardening. The sessile Lomer–Cottrell and Hirth lock dislocations, two stable lowest elastic energy stair‐rods, are studied in this paper. More specifically, using atomic resolution high‐angle annular dark‐field imaging and atomic‐column‐resolved X‐ray spectrum imaging in an aberration‐corrected scanning transmission electron microscope, dislocation core structures are examined in zinc‐blende CdTe. A procedure is outlined for atomic scale analysis of dislocation junctions which allows determination of their identity with specially tailored Burgers circuits and also formation mechanisms of the polar core structures based on Thompson's tetrahedron adapted to reactions of polar dislocations as they appear in CdTe and other zinc‐blende solids. Strain fields associated with the dislocations calculated via geometric phase analysis are found to be diffuse and free of `hot spots' that reflect compact structures and low elastic energy of the pure‐edge stair‐rods.</abstract><cop>5 Abbey Square, Chester, Cheshire CH1 2HU, England</cop><pub>International Union of Crystallography</pub><doi>10.1107/S2053273314019639</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 2053-2733
ispartof Acta crystallographica. Section A, Foundations and advances, 2014-11, Vol.70 (6), p.524-531
issn 2053-2733
0108-7673
2053-2733
language eng
recordid cdi_osti_scitechconnect_1391909
source Wiley; Alma/SFX Local Collection
subjects Atomic structure
Atoms & subatomic particles
Cadmium tellurides
CdTe
Crystallography
dislocation cores
Dislocation mobility
Dislocations
Electronics
HAADF
Hirth lock dislocations
Imaging
Locks
Lomer-Cottrell dislocations
Scanning electron microscopy
Semiconductor devices
Semiconductors
stair-rod dislocations
STEM
XEDS
title Atomic scale study of polar Lomer–Cottrell and Hirth lock dislocation cores in CdTe
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-09-22T01%3A30%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Atomic%20scale%20study%20of%20polar%20Lomer%E2%80%93Cottrell%20and%20Hirth%20lock%20dislocation%20cores%20in%20CdTe&rft.jtitle=Acta%20crystallographica.%20Section%20A,%20Foundations%20and%20advances&rft.au=Paulauskas,%20Tadas&rft.aucorp=Argonne%20National%20Lab.%20(ANL),%20Argonne,%20IL%20(United%20States)&rft.date=2014-11&rft.volume=70&rft.issue=6&rft.spage=524&rft.epage=531&rft.pages=524-531&rft.issn=2053-2733&rft.eissn=2053-2733&rft_id=info:doi/10.1107/S2053273314019639&rft_dat=%3Cproquest_osti_%3E1753536346%3C/proquest_osti_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c3831-934c1b116b5bb3f50515931e0bf86a6894a0d443c8a26863593ccc18431f77303%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1617957708&rft_id=info:pmid/&rfr_iscdi=true