Loading…

Antagonistic Regulation of ROMK by Long and Kidney-Specific WNK1 Isoforms

WNK kinases are serine-threonine kinases with an atypical placement of the catalytic lysine. Intronic deletions with increased expression of a ubiquitous long WNK1 transcript cause pseudohypoaldosteronism type 2 (PHA II), characterized by hypertension and hyperkalemia. Here, we report that long WNK1...

Full description

Saved in:
Bibliographic Details
Published in:Proceedings of the National Academy of Sciences - PNAS 2006-01, Vol.103 (5), p.1615-1620
Main Authors: Lazrak, Ahmed, Liu, Zhen, Huang, Chou-Long
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c526t-81053634120aa85eb71ce84b55309234ea3afe21d3c601817438d73557159af3
cites cdi_FETCH-LOGICAL-c526t-81053634120aa85eb71ce84b55309234ea3afe21d3c601817438d73557159af3
container_end_page 1620
container_issue 5
container_start_page 1615
container_title Proceedings of the National Academy of Sciences - PNAS
container_volume 103
creator Lazrak, Ahmed
Liu, Zhen
Huang, Chou-Long
description WNK kinases are serine-threonine kinases with an atypical placement of the catalytic lysine. Intronic deletions with increased expression of a ubiquitous long WNK1 transcript cause pseudohypoaldosteronism type 2 (PHA II), characterized by hypertension and hyperkalemia. Here, we report that long WNK1 inhibited ROMK1 by stimulating its endocytosis. Inhibition of ROMK by long WNK1 was synergistic with, but not dependent on, WNK4. A smaller transcript of WNK1 lacking the N-terminal 1-437 amino acids is expressed highly in the kidney. Whether expression of the KSWNK1 (kidney-specific, KS) is altered in PHA II is not known. We found that KS-WNK1 did not inhibit ROMK1 but reversed the inhibition of ROMK1 caused by long WNK1. Consistent with the lack of inhibition by KS-WNK1, we found that amino acids 1-491 of the long WNK1 were sufficient for inhibiting ROMK. Dietary K⁺ restriction decreases ROMK abundance in the renal cortical-collecting ducts by stimulating endocytosis, an adaptative response important for conservation of K⁺ during K⁺ deficiency. We found that K⁺ restriction in rats increased whole-kidney transcript of long WNK1 while decreasing that of KS-WNK1. Thus, KS-WNK1 is a physiological antagonist of long WNK1. Hyperkalemia in PHA II patients with PHA II mutations may be caused, at least partially, by increased expression of long WNK1 with or without decreased expression of KS-WNK1.
doi_str_mv 10.1073/pnas.0510609103
format article
fullrecord <record><control><sourceid>jstor_pnas_</sourceid><recordid>TN_cdi_jstor_primary_30048421</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>30048421</jstor_id><sourcerecordid>30048421</sourcerecordid><originalsourceid>FETCH-LOGICAL-c526t-81053634120aa85eb71ce84b55309234ea3afe21d3c601817438d73557159af3</originalsourceid><addsrcrecordid>eNqF0ktvEzEQAGALgWgInDmBVhzgtO2MH7veC1JV8YgSqFQqcbScXW9wtLFT24vIv8dRoqZwgJMt-ZvxeMaEvEQ4R6jZxdbpeA4CoYIGgT0iE8ybsuINPCYTAFqXklN-Rp7FuAaARkh4Ss6w4lRSWU_I7NIlvfLOxmTb4sasxkEn613h--Lm-su8WO6KhXerQruumNvOmV35bWta22f-_esci1n0vQ-b-Jw86fUQzYvjOiW3Hz_cXn0uF9efZleXi7IVtEqlRBCsYhwpaC2FWdbYGsmXQjBoKONGM90bih1rK0CJNWeyq5kQNYpG92xK3h_SbsflxnStcSnoQW2D3eiwU15b9eeJsz_Uyv9UyCoQ-YYpeXtMEPzdaGJSGxtbMwzaGT9GVee-YpNL_B_MpdVcMpnhm7_g2o_B5SYoCsi4zO3O6OKA2uBjDKa_LxlB7Wep9rNUp1nmiNcPX3ryx-E9APvIUzqmREYoMnj3T6D6cRiS-ZWyfHWQ65h8uKcMgOf_g-w3nsO5Ow</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>201348164</pqid></control><display><type>article</type><title>Antagonistic Regulation of ROMK by Long and Kidney-Specific WNK1 Isoforms</title><source>Open Access: PubMed Central</source><source>JSTOR Archival Journals and Primary Sources Collection</source><creator>Lazrak, Ahmed ; Liu, Zhen ; Huang, Chou-Long</creator><creatorcontrib>Lazrak, Ahmed ; Liu, Zhen ; Huang, Chou-Long</creatorcontrib><description>WNK kinases are serine-threonine kinases with an atypical placement of the catalytic lysine. Intronic deletions with increased expression of a ubiquitous long WNK1 transcript cause pseudohypoaldosteronism type 2 (PHA II), characterized by hypertension and hyperkalemia. Here, we report that long WNK1 inhibited ROMK1 by stimulating its endocytosis. Inhibition of ROMK by long WNK1 was synergistic with, but not dependent on, WNK4. A smaller transcript of WNK1 lacking the N-terminal 1-437 amino acids is expressed highly in the kidney. Whether expression of the KSWNK1 (kidney-specific, KS) is altered in PHA II is not known. We found that KS-WNK1 did not inhibit ROMK1 but reversed the inhibition of ROMK1 caused by long WNK1. Consistent with the lack of inhibition by KS-WNK1, we found that amino acids 1-491 of the long WNK1 were sufficient for inhibiting ROMK. Dietary K⁺ restriction decreases ROMK abundance in the renal cortical-collecting ducts by stimulating endocytosis, an adaptative response important for conservation of K⁺ during K⁺ deficiency. We found that K⁺ restriction in rats increased whole-kidney transcript of long WNK1 while decreasing that of KS-WNK1. Thus, KS-WNK1 is a physiological antagonist of long WNK1. Hyperkalemia in PHA II patients with PHA II mutations may be caused, at least partially, by increased expression of long WNK1 with or without decreased expression of KS-WNK1.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.0510609103</identifier><identifier>PMID: 16428287</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Amino Acid Sequence ; Amino acids ; Animals ; Antagonist drugs ; B lymphocytes ; Biological Sciences ; Blotting, Western ; Cell Line ; Clathrin - metabolism ; Diet ; DNA - chemistry ; DNA - metabolism ; Dose-Response Relationship, Drug ; Dynamins - metabolism ; Electrophysiology ; Endocytosis ; Enzymes ; Exons ; Female ; Gene expression ; Gene Expression Regulation ; Genetic mutation ; Green Fluorescent Proteins - metabolism ; Humans ; Hyperkalemia ; Hypertension ; Immunoprecipitation ; Intracellular Signaling Peptides and Proteins ; Kidney - metabolism ; Kidneys ; Male ; Minor Histocompatibility Antigens ; Models, Biological ; Models, Genetic ; Molecular Sequence Data ; Mutation ; Patch-Clamp Techniques ; Potassium - chemistry ; Potassium - metabolism ; Potassium Channels, Inwardly Rectifying - physiology ; Protein Isoforms ; Protein Structure, Tertiary ; Protein-Serine-Threonine Kinases - biosynthesis ; Protein-Serine-Threonine Kinases - metabolism ; Rats ; Rats, Sprague-Dawley ; RNA, Messenger - metabolism ; RNA, Small Interfering - metabolism ; Small interfering RNA ; Transfection ; WNK Lysine-Deficient Protein Kinase 1</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2006-01, Vol.103 (5), p.1615-1620</ispartof><rights>Copyright 2006 National Academy of Sciences of the United States of America</rights><rights>Copyright National Academy of Sciences Jan 31, 2006</rights><rights>Copyright © 2006, The National Academy of Sciences 2006</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c526t-81053634120aa85eb71ce84b55309234ea3afe21d3c601817438d73557159af3</citedby><cites>FETCH-LOGICAL-c526t-81053634120aa85eb71ce84b55309234ea3afe21d3c601817438d73557159af3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.pnas.org/content/103/5.cover.gif</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/30048421$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/30048421$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,315,730,783,787,888,27936,27937,53804,53806,58566,58799</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/16428287$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Lazrak, Ahmed</creatorcontrib><creatorcontrib>Liu, Zhen</creatorcontrib><creatorcontrib>Huang, Chou-Long</creatorcontrib><title>Antagonistic Regulation of ROMK by Long and Kidney-Specific WNK1 Isoforms</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>WNK kinases are serine-threonine kinases with an atypical placement of the catalytic lysine. Intronic deletions with increased expression of a ubiquitous long WNK1 transcript cause pseudohypoaldosteronism type 2 (PHA II), characterized by hypertension and hyperkalemia. Here, we report that long WNK1 inhibited ROMK1 by stimulating its endocytosis. Inhibition of ROMK by long WNK1 was synergistic with, but not dependent on, WNK4. A smaller transcript of WNK1 lacking the N-terminal 1-437 amino acids is expressed highly in the kidney. Whether expression of the KSWNK1 (kidney-specific, KS) is altered in PHA II is not known. We found that KS-WNK1 did not inhibit ROMK1 but reversed the inhibition of ROMK1 caused by long WNK1. Consistent with the lack of inhibition by KS-WNK1, we found that amino acids 1-491 of the long WNK1 were sufficient for inhibiting ROMK. Dietary K⁺ restriction decreases ROMK abundance in the renal cortical-collecting ducts by stimulating endocytosis, an adaptative response important for conservation of K⁺ during K⁺ deficiency. We found that K⁺ restriction in rats increased whole-kidney transcript of long WNK1 while decreasing that of KS-WNK1. Thus, KS-WNK1 is a physiological antagonist of long WNK1. Hyperkalemia in PHA II patients with PHA II mutations may be caused, at least partially, by increased expression of long WNK1 with or without decreased expression of KS-WNK1.</description><subject>Amino Acid Sequence</subject><subject>Amino acids</subject><subject>Animals</subject><subject>Antagonist drugs</subject><subject>B lymphocytes</subject><subject>Biological Sciences</subject><subject>Blotting, Western</subject><subject>Cell Line</subject><subject>Clathrin - metabolism</subject><subject>Diet</subject><subject>DNA - chemistry</subject><subject>DNA - metabolism</subject><subject>Dose-Response Relationship, Drug</subject><subject>Dynamins - metabolism</subject><subject>Electrophysiology</subject><subject>Endocytosis</subject><subject>Enzymes</subject><subject>Exons</subject><subject>Female</subject><subject>Gene expression</subject><subject>Gene Expression Regulation</subject><subject>Genetic mutation</subject><subject>Green Fluorescent Proteins - metabolism</subject><subject>Humans</subject><subject>Hyperkalemia</subject><subject>Hypertension</subject><subject>Immunoprecipitation</subject><subject>Intracellular Signaling Peptides and Proteins</subject><subject>Kidney - metabolism</subject><subject>Kidneys</subject><subject>Male</subject><subject>Minor Histocompatibility Antigens</subject><subject>Models, Biological</subject><subject>Models, Genetic</subject><subject>Molecular Sequence Data</subject><subject>Mutation</subject><subject>Patch-Clamp Techniques</subject><subject>Potassium - chemistry</subject><subject>Potassium - metabolism</subject><subject>Potassium Channels, Inwardly Rectifying - physiology</subject><subject>Protein Isoforms</subject><subject>Protein Structure, Tertiary</subject><subject>Protein-Serine-Threonine Kinases - biosynthesis</subject><subject>Protein-Serine-Threonine Kinases - metabolism</subject><subject>Rats</subject><subject>Rats, Sprague-Dawley</subject><subject>RNA, Messenger - metabolism</subject><subject>RNA, Small Interfering - metabolism</subject><subject>Small interfering RNA</subject><subject>Transfection</subject><subject>WNK Lysine-Deficient Protein Kinase 1</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><recordid>eNqF0ktvEzEQAGALgWgInDmBVhzgtO2MH7veC1JV8YgSqFQqcbScXW9wtLFT24vIv8dRoqZwgJMt-ZvxeMaEvEQ4R6jZxdbpeA4CoYIGgT0iE8ybsuINPCYTAFqXklN-Rp7FuAaARkh4Ss6w4lRSWU_I7NIlvfLOxmTb4sasxkEn613h--Lm-su8WO6KhXerQruumNvOmV35bWta22f-_esci1n0vQ-b-Jw86fUQzYvjOiW3Hz_cXn0uF9efZleXi7IVtEqlRBCsYhwpaC2FWdbYGsmXQjBoKONGM90bih1rK0CJNWeyq5kQNYpG92xK3h_SbsflxnStcSnoQW2D3eiwU15b9eeJsz_Uyv9UyCoQ-YYpeXtMEPzdaGJSGxtbMwzaGT9GVee-YpNL_B_MpdVcMpnhm7_g2o_B5SYoCsi4zO3O6OKA2uBjDKa_LxlB7Wep9rNUp1nmiNcPX3ryx-E9APvIUzqmREYoMnj3T6D6cRiS-ZWyfHWQ65h8uKcMgOf_g-w3nsO5Ow</recordid><startdate>20060131</startdate><enddate>20060131</enddate><creator>Lazrak, Ahmed</creator><creator>Liu, Zhen</creator><creator>Huang, Chou-Long</creator><general>National Academy of Sciences</general><general>National Acad Sciences</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7ST</scope><scope>7U6</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20060131</creationdate><title>Antagonistic Regulation of ROMK by Long and Kidney-Specific WNK1 Isoforms</title><author>Lazrak, Ahmed ; Liu, Zhen ; Huang, Chou-Long</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c526t-81053634120aa85eb71ce84b55309234ea3afe21d3c601817438d73557159af3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Amino Acid Sequence</topic><topic>Amino acids</topic><topic>Animals</topic><topic>Antagonist drugs</topic><topic>B lymphocytes</topic><topic>Biological Sciences</topic><topic>Blotting, Western</topic><topic>Cell Line</topic><topic>Clathrin - metabolism</topic><topic>Diet</topic><topic>DNA - chemistry</topic><topic>DNA - metabolism</topic><topic>Dose-Response Relationship, Drug</topic><topic>Dynamins - metabolism</topic><topic>Electrophysiology</topic><topic>Endocytosis</topic><topic>Enzymes</topic><topic>Exons</topic><topic>Female</topic><topic>Gene expression</topic><topic>Gene Expression Regulation</topic><topic>Genetic mutation</topic><topic>Green Fluorescent Proteins - metabolism</topic><topic>Humans</topic><topic>Hyperkalemia</topic><topic>Hypertension</topic><topic>Immunoprecipitation</topic><topic>Intracellular Signaling Peptides and Proteins</topic><topic>Kidney - metabolism</topic><topic>Kidneys</topic><topic>Male</topic><topic>Minor Histocompatibility Antigens</topic><topic>Models, Biological</topic><topic>Models, Genetic</topic><topic>Molecular Sequence Data</topic><topic>Mutation</topic><topic>Patch-Clamp Techniques</topic><topic>Potassium - chemistry</topic><topic>Potassium - metabolism</topic><topic>Potassium Channels, Inwardly Rectifying - physiology</topic><topic>Protein Isoforms</topic><topic>Protein Structure, Tertiary</topic><topic>Protein-Serine-Threonine Kinases - biosynthesis</topic><topic>Protein-Serine-Threonine Kinases - metabolism</topic><topic>Rats</topic><topic>Rats, Sprague-Dawley</topic><topic>RNA, Messenger - metabolism</topic><topic>RNA, Small Interfering - metabolism</topic><topic>Small interfering RNA</topic><topic>Transfection</topic><topic>WNK Lysine-Deficient Protein Kinase 1</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lazrak, Ahmed</creatorcontrib><creatorcontrib>Liu, Zhen</creatorcontrib><creatorcontrib>Huang, Chou-Long</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>Environment Abstracts</collection><collection>Sustainability Science Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lazrak, Ahmed</au><au>Liu, Zhen</au><au>Huang, Chou-Long</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Antagonistic Regulation of ROMK by Long and Kidney-Specific WNK1 Isoforms</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2006-01-31</date><risdate>2006</risdate><volume>103</volume><issue>5</issue><spage>1615</spage><epage>1620</epage><pages>1615-1620</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>WNK kinases are serine-threonine kinases with an atypical placement of the catalytic lysine. Intronic deletions with increased expression of a ubiquitous long WNK1 transcript cause pseudohypoaldosteronism type 2 (PHA II), characterized by hypertension and hyperkalemia. Here, we report that long WNK1 inhibited ROMK1 by stimulating its endocytosis. Inhibition of ROMK by long WNK1 was synergistic with, but not dependent on, WNK4. A smaller transcript of WNK1 lacking the N-terminal 1-437 amino acids is expressed highly in the kidney. Whether expression of the KSWNK1 (kidney-specific, KS) is altered in PHA II is not known. We found that KS-WNK1 did not inhibit ROMK1 but reversed the inhibition of ROMK1 caused by long WNK1. Consistent with the lack of inhibition by KS-WNK1, we found that amino acids 1-491 of the long WNK1 were sufficient for inhibiting ROMK. Dietary K⁺ restriction decreases ROMK abundance in the renal cortical-collecting ducts by stimulating endocytosis, an adaptative response important for conservation of K⁺ during K⁺ deficiency. We found that K⁺ restriction in rats increased whole-kidney transcript of long WNK1 while decreasing that of KS-WNK1. Thus, KS-WNK1 is a physiological antagonist of long WNK1. Hyperkalemia in PHA II patients with PHA II mutations may be caused, at least partially, by increased expression of long WNK1 with or without decreased expression of KS-WNK1.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>16428287</pmid><doi>10.1073/pnas.0510609103</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0027-8424
ispartof Proceedings of the National Academy of Sciences - PNAS, 2006-01, Vol.103 (5), p.1615-1620
issn 0027-8424
1091-6490
language eng
recordid cdi_jstor_primary_30048421
source Open Access: PubMed Central; JSTOR Archival Journals and Primary Sources Collection
subjects Amino Acid Sequence
Amino acids
Animals
Antagonist drugs
B lymphocytes
Biological Sciences
Blotting, Western
Cell Line
Clathrin - metabolism
Diet
DNA - chemistry
DNA - metabolism
Dose-Response Relationship, Drug
Dynamins - metabolism
Electrophysiology
Endocytosis
Enzymes
Exons
Female
Gene expression
Gene Expression Regulation
Genetic mutation
Green Fluorescent Proteins - metabolism
Humans
Hyperkalemia
Hypertension
Immunoprecipitation
Intracellular Signaling Peptides and Proteins
Kidney - metabolism
Kidneys
Male
Minor Histocompatibility Antigens
Models, Biological
Models, Genetic
Molecular Sequence Data
Mutation
Patch-Clamp Techniques
Potassium - chemistry
Potassium - metabolism
Potassium Channels, Inwardly Rectifying - physiology
Protein Isoforms
Protein Structure, Tertiary
Protein-Serine-Threonine Kinases - biosynthesis
Protein-Serine-Threonine Kinases - metabolism
Rats
Rats, Sprague-Dawley
RNA, Messenger - metabolism
RNA, Small Interfering - metabolism
Small interfering RNA
Transfection
WNK Lysine-Deficient Protein Kinase 1
title Antagonistic Regulation of ROMK by Long and Kidney-Specific WNK1 Isoforms
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-11-15T08%3A45%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pnas_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Antagonistic%20Regulation%20of%20ROMK%20by%20Long%20and%20Kidney-Specific%20WNK1%20Isoforms&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Lazrak,%20Ahmed&rft.date=2006-01-31&rft.volume=103&rft.issue=5&rft.spage=1615&rft.epage=1620&rft.pages=1615-1620&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.0510609103&rft_dat=%3Cjstor_pnas_%3E30048421%3C/jstor_pnas_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c526t-81053634120aa85eb71ce84b55309234ea3afe21d3c601817438d73557159af3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=201348164&rft_id=info:pmid/16428287&rft_jstor_id=30048421&rfr_iscdi=true