A Robotic Platform to Assess, Guide and Perturb Rat Forelimb Movements

Animal models are widely used to explore the mechanisms underlying sensorimotor control and learning. However, current experimental paradigms allow only limited control over task difficulty and cannot provide detailed information on forelimb kinematics and dynamics. Here we propose a novel robotic d...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on neural systems and rehabilitation engineering 2013-09, Vol.21 (5), p.796-805
Main Authors: Vigaru, Bogdan C., Lambercy, Olivier, Schubring-Giese, Maximilian, Hosp, Jonas A., Schneider, Melanie, Osei-Atiemo, Clement, Luft, Andreas, Gassert, Roger
Format: Article
Language:eng
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
recordid cdi_ieee_primary_6410435
title A Robotic Platform to Assess, Guide and Perturb Rat Forelimb Movements
format Article
creator Vigaru, Bogdan C.
Lambercy, Olivier
Schubring-Giese, Maximilian
Hosp, Jonas A.
Schneider, Melanie
Osei-Atiemo, Clement
Luft, Andreas
Gassert, Roger
subjects Algorithms
Animal models
Animals
Biomechanical Phenomena
Data Interpretation, Statistical
Dynamics
Electronics
endpoint kinematics
Environment
Equipment Design
Force
force fields
Forelimb - physiology
Friction
Kinematics
Learning - physiology
Male
motor learning
Motor Skills
Movement - physiology
Rats
Rats, Long-Evans
robotic manipulandum
Robotics
Robots
ispartof IEEE transactions on neural systems and rehabilitation engineering, 2013-09, Vol.21 (5), p.796-805
description Animal models are widely used to explore the mechanisms underlying sensorimotor control and learning. However, current experimental paradigms allow only limited control over task difficulty and cannot provide detailed information on forelimb kinematics and dynamics. Here we propose a novel robotic device for use in motor learning investigations with rats. The compact, highly transparent, three degree-of-freedom manipulandum is capable of rendering nominal forces of 2 N to guide or perturb rat forelimb movements, while providing objective and quantitative assessments of endpoint motor performance in a 50×30 mm 2 planar workspace. Preliminary experiments with six healthy rats show that the animals can be familiarized with the experimental setup and are able to grasp and manipulate the end-effector of the robot. Further, dynamic perturbations and guiding force fields (i.e., haptic tunnels) rendered by the device had significant influence on rat motor behavior (ANOVA, ). This approach opens up new research avenues for future characterizations of motor learning stages, both in healthy and in stroke models.
language eng
source Alma/SFX Local Collection
identifier ISSN: 1534-4320
fulltext fulltext
issn 1534-4320
1558-0210
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-05-28T23%3A22%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Robotic%20Platform%20to%20Assess,%20Guide%20and%20Perturb%20Rat%20Forelimb%20Movements&rft.jtitle=IEEE%20transactions%20on%20neural%20systems%20and%20rehabilitation%20engineering&rft.au=Vigaru,%20Bogdan%20C.&rft.date=2013-09-01&rft.volume=21&rft.issue=5&rft.spage=796&rft.epage=805&rft.pages=796-805&rft.issn=1534-4320&rft.eissn=1558-0210&rft.coden=ITNSB3&rft_id=info:doi/10.1109/TNSRE.2013.2240014&rft_dat=%3Cproquest_ieee_%3E1431296454%3C/proquest_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c482t-5b5d112be5166d9ed22eac176fffdbbdbe03790842e48344b9f30e9ac2c0fa103%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1431296454&rft_id=info:pmid/23335672&rft_ieee_id=6410435
container_title IEEE transactions on neural systems and rehabilitation engineering
container_volume 21
container_issue 5
container_start_page 796
container_end_page 805
fullrecord <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_ieee_primary_6410435</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6410435</ieee_id><sourcerecordid>1431296454</sourcerecordid><originalsourceid>FETCH-LOGICAL-c482t-5b5d112be5166d9ed22eac176fffdbbdbe03790842e48344b9f30e9ac2c0fa103</originalsourceid><addsrcrecordid>eNo9kE1LAzEQhoMotlb_gILk6MGt-dyPYyltFaqWWs8h2czCym5Tk6zgv3drq6cZmOd9GR6ErikZU0qKh83L23o2ZoTyMWOCECpO0JBKmSeEUXK637lIBGdkgC5C-OiJLJXZORowzrlMMzZE8wleO-NiXeJVo2PlfIujw5MQIIR7vOhqC1hvLV6Bj503eK0jnjsPTd0a_Oy-oIVtDJforNJNgKvjHKH3-WwzfUyWr4un6WSZlCJnMZFGWkqZAUnT1BZgGQNd9l9VVWWNsQYIzwqSCwYi50KYouIECl2yklSaEj5Cd4fenXefHYSo2jqU0DR6C64LigpOWZEKKXqUHdDSuxA8VGrn61b7b0WJ2vtTv_7U3p86-utDt8f-zrRg_yN_wnrg5gDUAPB_TgUlgkv-A3jXc2s</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><isCDI>true</isCDI><recordtype>article</recordtype><pqid>1431296454</pqid></control><display><type>article</type><title>A Robotic Platform to Assess, Guide and Perturb Rat Forelimb Movements</title><source>Alma/SFX Local Collection</source><creator>Vigaru, Bogdan C. ; Lambercy, Olivier ; Schubring-Giese, Maximilian ; Hosp, Jonas A. ; Schneider, Melanie ; Osei-Atiemo, Clement ; Luft, Andreas ; Gassert, Roger</creator><creatorcontrib>Vigaru, Bogdan C. ; Lambercy, Olivier ; Schubring-Giese, Maximilian ; Hosp, Jonas A. ; Schneider, Melanie ; Osei-Atiemo, Clement ; Luft, Andreas ; Gassert, Roger</creatorcontrib><description>Animal models are widely used to explore the mechanisms underlying sensorimotor control and learning. However, current experimental paradigms allow only limited control over task difficulty and cannot provide detailed information on forelimb kinematics and dynamics. Here we propose a novel robotic device for use in motor learning investigations with rats. The compact, highly transparent, three degree-of-freedom manipulandum is capable of rendering nominal forces of 2 N to guide or perturb rat forelimb movements, while providing objective and quantitative assessments of endpoint motor performance in a 50×30 mm 2 planar workspace. Preliminary experiments with six healthy rats show that the animals can be familiarized with the experimental setup and are able to grasp and manipulate the end-effector of the robot. Further, dynamic perturbations and guiding force fields (i.e., haptic tunnels) rendered by the device had significant influence on rat motor behavior (ANOVA, ). This approach opens up new research avenues for future characterizations of motor learning stages, both in healthy and in stroke models.</description><identifier>ISSN: 1534-4320</identifier><identifier>EISSN: 1558-0210</identifier><identifier>DOI: 10.1109/TNSRE.2013.2240014</identifier><identifier>PMID: 23335672</identifier><identifier>CODEN: ITNSB3</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Algorithms ; Animal models ; Animals ; Biomechanical Phenomena ; Data Interpretation, Statistical ; Dynamics ; Electronics ; endpoint kinematics ; Environment ; Equipment Design ; Force ; force fields ; Forelimb - physiology ; Friction ; Kinematics ; Learning - physiology ; Male ; motor learning ; Motor Skills ; Movement - physiology ; Rats ; Rats, Long-Evans ; robotic manipulandum ; Robotics ; Robots</subject><ispartof>IEEE transactions on neural systems and rehabilitation engineering, 2013-09, Vol.21 (5), p.796-805</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c482t-5b5d112be5166d9ed22eac176fffdbbdbe03790842e48344b9f30e9ac2c0fa103</citedby><cites>FETCH-LOGICAL-c482t-5b5d112be5166d9ed22eac176fffdbbdbe03790842e48344b9f30e9ac2c0fa103</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>315,787,791,27985,27986</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23335672$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Vigaru, Bogdan C.</creatorcontrib><creatorcontrib>Lambercy, Olivier</creatorcontrib><creatorcontrib>Schubring-Giese, Maximilian</creatorcontrib><creatorcontrib>Hosp, Jonas A.</creatorcontrib><creatorcontrib>Schneider, Melanie</creatorcontrib><creatorcontrib>Osei-Atiemo, Clement</creatorcontrib><creatorcontrib>Luft, Andreas</creatorcontrib><creatorcontrib>Gassert, Roger</creatorcontrib><title>A Robotic Platform to Assess, Guide and Perturb Rat Forelimb Movements</title><title>IEEE transactions on neural systems and rehabilitation engineering</title><addtitle>TNSRE</addtitle><addtitle>IEEE Trans Neural Syst Rehabil Eng</addtitle><description>Animal models are widely used to explore the mechanisms underlying sensorimotor control and learning. However, current experimental paradigms allow only limited control over task difficulty and cannot provide detailed information on forelimb kinematics and dynamics. Here we propose a novel robotic device for use in motor learning investigations with rats. The compact, highly transparent, three degree-of-freedom manipulandum is capable of rendering nominal forces of 2 N to guide or perturb rat forelimb movements, while providing objective and quantitative assessments of endpoint motor performance in a 50×30 mm 2 planar workspace. Preliminary experiments with six healthy rats show that the animals can be familiarized with the experimental setup and are able to grasp and manipulate the end-effector of the robot. Further, dynamic perturbations and guiding force fields (i.e., haptic tunnels) rendered by the device had significant influence on rat motor behavior (ANOVA, ). This approach opens up new research avenues for future characterizations of motor learning stages, both in healthy and in stroke models.</description><subject>Algorithms</subject><subject>Animal models</subject><subject>Animals</subject><subject>Biomechanical Phenomena</subject><subject>Data Interpretation, Statistical</subject><subject>Dynamics</subject><subject>Electronics</subject><subject>endpoint kinematics</subject><subject>Environment</subject><subject>Equipment Design</subject><subject>Force</subject><subject>force fields</subject><subject>Forelimb - physiology</subject><subject>Friction</subject><subject>Kinematics</subject><subject>Learning - physiology</subject><subject>Male</subject><subject>motor learning</subject><subject>Motor Skills</subject><subject>Movement - physiology</subject><subject>Rats</subject><subject>Rats, Long-Evans</subject><subject>robotic manipulandum</subject><subject>Robotics</subject><subject>Robots</subject><issn>1534-4320</issn><issn>1558-0210</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNo9kE1LAzEQhoMotlb_gILk6MGt-dyPYyltFaqWWs8h2czCym5Tk6zgv3drq6cZmOd9GR6ErikZU0qKh83L23o2ZoTyMWOCECpO0JBKmSeEUXK637lIBGdkgC5C-OiJLJXZORowzrlMMzZE8wleO-NiXeJVo2PlfIujw5MQIIR7vOhqC1hvLV6Bj503eK0jnjsPTd0a_Oy-oIVtDJforNJNgKvjHKH3-WwzfUyWr4un6WSZlCJnMZFGWkqZAUnT1BZgGQNd9l9VVWWNsQYIzwqSCwYi50KYouIECl2yklSaEj5Cd4fenXefHYSo2jqU0DR6C64LigpOWZEKKXqUHdDSuxA8VGrn61b7b0WJ2vtTv_7U3p86-utDt8f-zrRg_yN_wnrg5gDUAPB_TgUlgkv-A3jXc2s</recordid><startdate>20130901</startdate><enddate>20130901</enddate><creator>Vigaru, Bogdan C.</creator><creator>Lambercy, Olivier</creator><creator>Schubring-Giese, Maximilian</creator><creator>Hosp, Jonas A.</creator><creator>Schneider, Melanie</creator><creator>Osei-Atiemo, Clement</creator><creator>Luft, Andreas</creator><creator>Gassert, Roger</creator><general>IEEE</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20130901</creationdate><title>A Robotic Platform to Assess, Guide and Perturb Rat Forelimb Movements</title><author>Vigaru, Bogdan C. ; Lambercy, Olivier ; Schubring-Giese, Maximilian ; Hosp, Jonas A. ; Schneider, Melanie ; Osei-Atiemo, Clement ; Luft, Andreas ; Gassert, Roger</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c482t-5b5d112be5166d9ed22eac176fffdbbdbe03790842e48344b9f30e9ac2c0fa103</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Algorithms</topic><topic>Animal models</topic><topic>Animals</topic><topic>Biomechanical Phenomena</topic><topic>Data Interpretation, Statistical</topic><topic>Dynamics</topic><topic>Electronics</topic><topic>endpoint kinematics</topic><topic>Environment</topic><topic>Equipment Design</topic><topic>Force</topic><topic>force fields</topic><topic>Forelimb - physiology</topic><topic>Friction</topic><topic>Kinematics</topic><topic>Learning - physiology</topic><topic>Male</topic><topic>motor learning</topic><topic>Motor Skills</topic><topic>Movement - physiology</topic><topic>Rats</topic><topic>Rats, Long-Evans</topic><topic>robotic manipulandum</topic><topic>Robotics</topic><topic>Robots</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Vigaru, Bogdan C.</creatorcontrib><creatorcontrib>Lambercy, Olivier</creatorcontrib><creatorcontrib>Schubring-Giese, Maximilian</creatorcontrib><creatorcontrib>Hosp, Jonas A.</creatorcontrib><creatorcontrib>Schneider, Melanie</creatorcontrib><creatorcontrib>Osei-Atiemo, Clement</creatorcontrib><creatorcontrib>Luft, Andreas</creatorcontrib><creatorcontrib>Gassert, Roger</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE transactions on neural systems and rehabilitation engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Vigaru, Bogdan C.</au><au>Lambercy, Olivier</au><au>Schubring-Giese, Maximilian</au><au>Hosp, Jonas A.</au><au>Schneider, Melanie</au><au>Osei-Atiemo, Clement</au><au>Luft, Andreas</au><au>Gassert, Roger</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Robotic Platform to Assess, Guide and Perturb Rat Forelimb Movements</atitle><jtitle>IEEE transactions on neural systems and rehabilitation engineering</jtitle><stitle>TNSRE</stitle><addtitle>IEEE Trans Neural Syst Rehabil Eng</addtitle><date>2013-09-01</date><risdate>2013</risdate><volume>21</volume><issue>5</issue><spage>796</spage><epage>805</epage><pages>796-805</pages><issn>1534-4320</issn><eissn>1558-0210</eissn><coden>ITNSB3</coden><notes>ObjectType-Article-1</notes><notes>SourceType-Scholarly Journals-1</notes><notes>ObjectType-Feature-2</notes><notes>content type line 23</notes><abstract>Animal models are widely used to explore the mechanisms underlying sensorimotor control and learning. However, current experimental paradigms allow only limited control over task difficulty and cannot provide detailed information on forelimb kinematics and dynamics. Here we propose a novel robotic device for use in motor learning investigations with rats. The compact, highly transparent, three degree-of-freedom manipulandum is capable of rendering nominal forces of 2 N to guide or perturb rat forelimb movements, while providing objective and quantitative assessments of endpoint motor performance in a 50×30 mm 2 planar workspace. Preliminary experiments with six healthy rats show that the animals can be familiarized with the experimental setup and are able to grasp and manipulate the end-effector of the robot. Further, dynamic perturbations and guiding force fields (i.e., haptic tunnels) rendered by the device had significant influence on rat motor behavior (ANOVA, ). This approach opens up new research avenues for future characterizations of motor learning stages, both in healthy and in stroke models.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>23335672</pmid><doi>10.1109/TNSRE.2013.2240014</doi><oa>free_for_read</oa></addata></record>