Loading…

A High-Efficiency Megawatt-Class Nonrelativistic Magnetron

Numerical simulations of a prototype conventional magnetron capable of an RF output power exceeding 1.3 MW at peak efficiency greater than 87% for relatively low diode voltages of ~ 40 kV are presented. Virtual prototyping of the magnetron design is carried out on massively parallel architecture uti...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on plasma science 2012-09, Vol.40 (9), p.2112-2118
Main Authors: Fleming, T. P., Lambrecht, M. R., Mardahl, P. J., Keisling, J. D.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c221t-332f3d7af51876bdb68337a76b1c2627520ec92e8d8a5b0ee14758c079a05d8d3
cites cdi_FETCH-LOGICAL-c221t-332f3d7af51876bdb68337a76b1c2627520ec92e8d8a5b0ee14758c079a05d8d3
container_end_page 2118
container_issue 9
container_start_page 2112
container_title IEEE transactions on plasma science
container_volume 40
creator Fleming, T. P.
Lambrecht, M. R.
Mardahl, P. J.
Keisling, J. D.
description Numerical simulations of a prototype conventional magnetron capable of an RF output power exceeding 1.3 MW at peak efficiency greater than 87% for relatively low diode voltages of ~ 40 kV are presented. Virtual prototyping of the magnetron design is carried out on massively parallel architecture utilizing the 3-D improved concurrent electromagnetic particle-in-cell code. Simulations demonstrate that the magnetron is capable of stable and robust oscillations in the π mode at saturation with negligible mode competition at 912 MHz over a range of magnetic fields extending from B = 0.18 T to B = 0.275 T and voltages ranging from 37-56 kV. RF Output power ranged from 400 kW-1.5 MW over these voltages with efficiencies typically above 85%. Oscillations in the π mode follow the Buneman-Hartree resonance curve for all magnetic fields sampled with a window of π-mode oscillations typically extending over 6 kV. Electron back bombardment of the cathode as well as collisions with the slow wave structure acted as major loss mechanisms.
doi_str_mv 10.1109/TPS.2012.2205274
format article
fullrecord <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_ieee_primary_6241438</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6241438</ieee_id><sourcerecordid>2758514851</sourcerecordid><originalsourceid>FETCH-LOGICAL-c221t-332f3d7af51876bdb68337a76b1c2627520ec92e8d8a5b0ee14758c079a05d8d3</originalsourceid><addsrcrecordid>eNo9kEFLAzEQhYMoWKt3wcuC560zk80m8VZKa4VWBet5SbPZmlJ3a7JV-u_d0uJp3uF7b-Bj7BZhgAj6YfH2PiBAGhCBIJmdsR5qrlPNpThnPQDNU66QX7KrGNcAmAmgHnscJlO_-kzHVeWtd7XdJ3O3Mr-mbdPRxsSYvDR1cBvT-h8fW2-TuVnVrg1Nfc0uKrOJ7uZ0--xjMl6Mpuns9el5NJyllgjblHOqeClNJVDJfFkuc8W5NF1ESzlJQeCsJqdKZcQSnMNMCmVBagOiVCXvs_vj7jY03zsX22Ld7ELdvSwQuEbkpPOOgiNlQxNjcFWxDf7LhH0HFQdDRWeoOBgqToa6yt2x4p1z_3hOGWZc8T-CRmAu</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1039113296</pqid></control><display><type>article</type><title>A High-Efficiency Megawatt-Class Nonrelativistic Magnetron</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Fleming, T. P. ; Lambrecht, M. R. ; Mardahl, P. J. ; Keisling, J. D.</creator><creatorcontrib>Fleming, T. P. ; Lambrecht, M. R. ; Mardahl, P. J. ; Keisling, J. D.</creatorcontrib><description>Numerical simulations of a prototype conventional magnetron capable of an RF output power exceeding 1.3 MW at peak efficiency greater than 87% for relatively low diode voltages of ~ 40 kV are presented. Virtual prototyping of the magnetron design is carried out on massively parallel architecture utilizing the 3-D improved concurrent electromagnetic particle-in-cell code. Simulations demonstrate that the magnetron is capable of stable and robust oscillations in the π mode at saturation with negligible mode competition at 912 MHz over a range of magnetic fields extending from B = 0.18 T to B = 0.275 T and voltages ranging from 37-56 kV. RF Output power ranged from 400 kW-1.5 MW over these voltages with efficiencies typically above 85%. Oscillations in the π mode follow the Buneman-Hartree resonance curve for all magnetic fields sampled with a window of π-mode oscillations typically extending over 6 kV. Electron back bombardment of the cathode as well as collisions with the slow wave structure acted as major loss mechanisms.</description><identifier>ISSN: 0093-3813</identifier><identifier>EISSN: 1939-9375</identifier><identifier>DOI: 10.1109/TPS.2012.2205274</identifier><identifier>CODEN: ITPSBD</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Anodes ; Cathodes ; Conventional magnetron ; Electric currents ; Electromagnetics ; Electrons ; high-power microwave ; Magnetic fields ; Magnetic resonance ; Magnetic resonance imaging ; Magnetomechanical effects ; mode competition ; Radio frequency ; Saturation magnetization ; Simulation</subject><ispartof>IEEE transactions on plasma science, 2012-09, Vol.40 (9), p.2112-2118</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Sep 2012</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c221t-332f3d7af51876bdb68337a76b1c2627520ec92e8d8a5b0ee14758c079a05d8d3</citedby><cites>FETCH-LOGICAL-c221t-332f3d7af51876bdb68337a76b1c2627520ec92e8d8a5b0ee14758c079a05d8d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6241438$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>315,786,790,27957,27958,55147</link.rule.ids></links><search><creatorcontrib>Fleming, T. P.</creatorcontrib><creatorcontrib>Lambrecht, M. R.</creatorcontrib><creatorcontrib>Mardahl, P. J.</creatorcontrib><creatorcontrib>Keisling, J. D.</creatorcontrib><title>A High-Efficiency Megawatt-Class Nonrelativistic Magnetron</title><title>IEEE transactions on plasma science</title><addtitle>TPS</addtitle><description>Numerical simulations of a prototype conventional magnetron capable of an RF output power exceeding 1.3 MW at peak efficiency greater than 87% for relatively low diode voltages of ~ 40 kV are presented. Virtual prototyping of the magnetron design is carried out on massively parallel architecture utilizing the 3-D improved concurrent electromagnetic particle-in-cell code. Simulations demonstrate that the magnetron is capable of stable and robust oscillations in the π mode at saturation with negligible mode competition at 912 MHz over a range of magnetic fields extending from B = 0.18 T to B = 0.275 T and voltages ranging from 37-56 kV. RF Output power ranged from 400 kW-1.5 MW over these voltages with efficiencies typically above 85%. Oscillations in the π mode follow the Buneman-Hartree resonance curve for all magnetic fields sampled with a window of π-mode oscillations typically extending over 6 kV. Electron back bombardment of the cathode as well as collisions with the slow wave structure acted as major loss mechanisms.</description><subject>Anodes</subject><subject>Cathodes</subject><subject>Conventional magnetron</subject><subject>Electric currents</subject><subject>Electromagnetics</subject><subject>Electrons</subject><subject>high-power microwave</subject><subject>Magnetic fields</subject><subject>Magnetic resonance</subject><subject>Magnetic resonance imaging</subject><subject>Magnetomechanical effects</subject><subject>mode competition</subject><subject>Radio frequency</subject><subject>Saturation magnetization</subject><subject>Simulation</subject><issn>0093-3813</issn><issn>1939-9375</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNo9kEFLAzEQhYMoWKt3wcuC560zk80m8VZKa4VWBet5SbPZmlJ3a7JV-u_d0uJp3uF7b-Bj7BZhgAj6YfH2PiBAGhCBIJmdsR5qrlPNpThnPQDNU66QX7KrGNcAmAmgHnscJlO_-kzHVeWtd7XdJ3O3Mr-mbdPRxsSYvDR1cBvT-h8fW2-TuVnVrg1Nfc0uKrOJ7uZ0--xjMl6Mpuns9el5NJyllgjblHOqeClNJVDJfFkuc8W5NF1ESzlJQeCsJqdKZcQSnMNMCmVBagOiVCXvs_vj7jY03zsX22Ld7ELdvSwQuEbkpPOOgiNlQxNjcFWxDf7LhH0HFQdDRWeoOBgqToa6yt2x4p1z_3hOGWZc8T-CRmAu</recordid><startdate>201209</startdate><enddate>201209</enddate><creator>Fleming, T. P.</creator><creator>Lambrecht, M. R.</creator><creator>Mardahl, P. J.</creator><creator>Keisling, J. D.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope></search><sort><creationdate>201209</creationdate><title>A High-Efficiency Megawatt-Class Nonrelativistic Magnetron</title><author>Fleming, T. P. ; Lambrecht, M. R. ; Mardahl, P. J. ; Keisling, J. D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c221t-332f3d7af51876bdb68337a76b1c2627520ec92e8d8a5b0ee14758c079a05d8d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Anodes</topic><topic>Cathodes</topic><topic>Conventional magnetron</topic><topic>Electric currents</topic><topic>Electromagnetics</topic><topic>Electrons</topic><topic>high-power microwave</topic><topic>Magnetic fields</topic><topic>Magnetic resonance</topic><topic>Magnetic resonance imaging</topic><topic>Magnetomechanical effects</topic><topic>mode competition</topic><topic>Radio frequency</topic><topic>Saturation magnetization</topic><topic>Simulation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fleming, T. P.</creatorcontrib><creatorcontrib>Lambrecht, M. R.</creatorcontrib><creatorcontrib>Mardahl, P. J.</creatorcontrib><creatorcontrib>Keisling, J. D.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998–Present</collection><collection>IEEE Xplore</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on plasma science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fleming, T. P.</au><au>Lambrecht, M. R.</au><au>Mardahl, P. J.</au><au>Keisling, J. D.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A High-Efficiency Megawatt-Class Nonrelativistic Magnetron</atitle><jtitle>IEEE transactions on plasma science</jtitle><stitle>TPS</stitle><date>2012-09</date><risdate>2012</risdate><volume>40</volume><issue>9</issue><spage>2112</spage><epage>2118</epage><pages>2112-2118</pages><issn>0093-3813</issn><eissn>1939-9375</eissn><coden>ITPSBD</coden><abstract>Numerical simulations of a prototype conventional magnetron capable of an RF output power exceeding 1.3 MW at peak efficiency greater than 87% for relatively low diode voltages of ~ 40 kV are presented. Virtual prototyping of the magnetron design is carried out on massively parallel architecture utilizing the 3-D improved concurrent electromagnetic particle-in-cell code. Simulations demonstrate that the magnetron is capable of stable and robust oscillations in the π mode at saturation with negligible mode competition at 912 MHz over a range of magnetic fields extending from B = 0.18 T to B = 0.275 T and voltages ranging from 37-56 kV. RF Output power ranged from 400 kW-1.5 MW over these voltages with efficiencies typically above 85%. Oscillations in the π mode follow the Buneman-Hartree resonance curve for all magnetic fields sampled with a window of π-mode oscillations typically extending over 6 kV. Electron back bombardment of the cathode as well as collisions with the slow wave structure acted as major loss mechanisms.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TPS.2012.2205274</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0093-3813
ispartof IEEE transactions on plasma science, 2012-09, Vol.40 (9), p.2112-2118
issn 0093-3813
1939-9375
language eng
recordid cdi_ieee_primary_6241438
source IEEE Electronic Library (IEL) Journals
subjects Anodes
Cathodes
Conventional magnetron
Electric currents
Electromagnetics
Electrons
high-power microwave
Magnetic fields
Magnetic resonance
Magnetic resonance imaging
Magnetomechanical effects
mode competition
Radio frequency
Saturation magnetization
Simulation
title A High-Efficiency Megawatt-Class Nonrelativistic Magnetron
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-09-21T18%3A02%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20High-Efficiency%20Megawatt-Class%20Nonrelativistic%20Magnetron&rft.jtitle=IEEE%20transactions%20on%20plasma%20science&rft.au=Fleming,%20T.%20P.&rft.date=2012-09&rft.volume=40&rft.issue=9&rft.spage=2112&rft.epage=2118&rft.pages=2112-2118&rft.issn=0093-3813&rft.eissn=1939-9375&rft.coden=ITPSBD&rft_id=info:doi/10.1109/TPS.2012.2205274&rft_dat=%3Cproquest_ieee_%3E2758514851%3C/proquest_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c221t-332f3d7af51876bdb68337a76b1c2627520ec92e8d8a5b0ee14758c079a05d8d3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1039113296&rft_id=info:pmid/&rft_ieee_id=6241438&rfr_iscdi=true