Loading…

MUSIC Algorithm for Near Field Point-like Scatterers' Localization

The problem of localizing point-like scatterers in near-field configuration is addressed. In particular, MUSIC algorithm is applied in this particular scenario. The scatterers are assumed to be illuminated by an unknown incident field and the scattering coefficients turn to be correlated. Accordingl...

Full description

Saved in:
Bibliographic Details
Main Authors: Dell'Aversano, Angela, Cuccaro, Antonio, Maisto, Maria Antonia
Format: Conference Proceeding
Language:English
Subjects:
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 4
container_issue
container_start_page 1
container_title
container_volume
creator Dell'Aversano, Angela
Cuccaro, Antonio
Maisto, Maria Antonia
description The problem of localizing point-like scatterers in near-field configuration is addressed. In particular, MUSIC algorithm is applied in this particular scenario. The scatterers are assumed to be illuminated by an unknown incident field and the scattering coefficients turn to be correlated. Accordingly, the correlation matrix is rank deficient. In order to cope with this drawback, we propose and numerically check a rank restoring procedure tailored for near-field configurations.
doi_str_mv 10.1109/CAMA56352.2022.10002658
format conference_proceeding
fullrecord <record><control><sourceid>ieee_CHZPO</sourceid><recordid>TN_cdi_ieee_primary_10002658</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10002658</ieee_id><sourcerecordid>10002658</sourcerecordid><originalsourceid>FETCH-LOGICAL-i499-ba6345f84f2a6f42a2141c230edbf2e6788582a6b08b4a06804f78cd776c60143</originalsourceid><addsrcrecordid>eNo1j0FLwzAYhqMgOOf-gWBunjq_fEm-pMdanA46FTbPI20TjXarpL24X-9APb2H5-GBl7FrAXMhIL8ti1WhSWqcIyDOBQAgaXvCLgSRVjlII0_ZBEnJjEyuz9lsGD6OlkSQWooJu1u9rpclL7q3PsXxfcdDn_iTd4kvou9a_tLH_Zh18dPzdePG0Sefhhte9Y3r4sGNsd9fsrPgusHP_nbKNov7TfmYVc8Py7KosqjyPKsdSaWDVQEdBYUOhRINSvBtHdCTsVbbI6rB1soBWVDB2KY1hhoCoeSUXf1mo_d--5XizqXv7f9l-QPGjklt</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>MUSIC Algorithm for Near Field Point-like Scatterers' Localization</title><source>IEEE Xplore All Conference Series</source><creator>Dell'Aversano, Angela ; Cuccaro, Antonio ; Maisto, Maria Antonia</creator><creatorcontrib>Dell'Aversano, Angela ; Cuccaro, Antonio ; Maisto, Maria Antonia</creatorcontrib><description>The problem of localizing point-like scatterers in near-field configuration is addressed. In particular, MUSIC algorithm is applied in this particular scenario. The scatterers are assumed to be illuminated by an unknown incident field and the scattering coefficients turn to be correlated. Accordingly, the correlation matrix is rank deficient. In order to cope with this drawback, we propose and numerically check a rank restoring procedure tailored for near-field configurations.</description><identifier>EISSN: 2643-6795</identifier><identifier>EISBN: 1665490373</identifier><identifier>EISBN: 9781665490375</identifier><identifier>DOI: 10.1109/CAMA56352.2022.10002658</identifier><language>eng</language><publisher>IEEE</publisher><subject>Antenna measurements ; Correlation ; decorrelation method ; Location awareness ; Multiple signal classification ; MUSIC ; near-field ; Point-like scatterers ; rank recovery ; Scattering</subject><ispartof>2022 IEEE Conference on Antenna Measurements and Applications (CAMA), 2022, p.1-4</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10002658$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>310,311,783,787,792,793,23942,23943,25152,27937,54883,55260</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10002658$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Dell'Aversano, Angela</creatorcontrib><creatorcontrib>Cuccaro, Antonio</creatorcontrib><creatorcontrib>Maisto, Maria Antonia</creatorcontrib><title>MUSIC Algorithm for Near Field Point-like Scatterers' Localization</title><title>2022 IEEE Conference on Antenna Measurements and Applications (CAMA)</title><addtitle>CAMA</addtitle><description>The problem of localizing point-like scatterers in near-field configuration is addressed. In particular, MUSIC algorithm is applied in this particular scenario. The scatterers are assumed to be illuminated by an unknown incident field and the scattering coefficients turn to be correlated. Accordingly, the correlation matrix is rank deficient. In order to cope with this drawback, we propose and numerically check a rank restoring procedure tailored for near-field configurations.</description><subject>Antenna measurements</subject><subject>Correlation</subject><subject>decorrelation method</subject><subject>Location awareness</subject><subject>Multiple signal classification</subject><subject>MUSIC</subject><subject>near-field</subject><subject>Point-like scatterers</subject><subject>rank recovery</subject><subject>Scattering</subject><issn>2643-6795</issn><isbn>1665490373</isbn><isbn>9781665490375</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2022</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNo1j0FLwzAYhqMgOOf-gWBunjq_fEm-pMdanA46FTbPI20TjXarpL24X-9APb2H5-GBl7FrAXMhIL8ti1WhSWqcIyDOBQAgaXvCLgSRVjlII0_ZBEnJjEyuz9lsGD6OlkSQWooJu1u9rpclL7q3PsXxfcdDn_iTd4kvou9a_tLH_Zh18dPzdePG0Sefhhte9Y3r4sGNsd9fsrPgusHP_nbKNov7TfmYVc8Py7KosqjyPKsdSaWDVQEdBYUOhRINSvBtHdCTsVbbI6rB1soBWVDB2KY1hhoCoeSUXf1mo_d--5XizqXv7f9l-QPGjklt</recordid><startdate>20221214</startdate><enddate>20221214</enddate><creator>Dell'Aversano, Angela</creator><creator>Cuccaro, Antonio</creator><creator>Maisto, Maria Antonia</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>20221214</creationdate><title>MUSIC Algorithm for Near Field Point-like Scatterers' Localization</title><author>Dell'Aversano, Angela ; Cuccaro, Antonio ; Maisto, Maria Antonia</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i499-ba6345f84f2a6f42a2141c230edbf2e6788582a6b08b4a06804f78cd776c60143</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Antenna measurements</topic><topic>Correlation</topic><topic>decorrelation method</topic><topic>Location awareness</topic><topic>Multiple signal classification</topic><topic>MUSIC</topic><topic>near-field</topic><topic>Point-like scatterers</topic><topic>rank recovery</topic><topic>Scattering</topic><toplevel>online_resources</toplevel><creatorcontrib>Dell'Aversano, Angela</creatorcontrib><creatorcontrib>Cuccaro, Antonio</creatorcontrib><creatorcontrib>Maisto, Maria Antonia</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Dell'Aversano, Angela</au><au>Cuccaro, Antonio</au><au>Maisto, Maria Antonia</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>MUSIC Algorithm for Near Field Point-like Scatterers' Localization</atitle><btitle>2022 IEEE Conference on Antenna Measurements and Applications (CAMA)</btitle><stitle>CAMA</stitle><date>2022-12-14</date><risdate>2022</risdate><spage>1</spage><epage>4</epage><pages>1-4</pages><eissn>2643-6795</eissn><eisbn>1665490373</eisbn><eisbn>9781665490375</eisbn><abstract>The problem of localizing point-like scatterers in near-field configuration is addressed. In particular, MUSIC algorithm is applied in this particular scenario. The scatterers are assumed to be illuminated by an unknown incident field and the scattering coefficients turn to be correlated. Accordingly, the correlation matrix is rank deficient. In order to cope with this drawback, we propose and numerically check a rank restoring procedure tailored for near-field configurations.</abstract><pub>IEEE</pub><doi>10.1109/CAMA56352.2022.10002658</doi><tpages>4</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier EISSN: 2643-6795
ispartof 2022 IEEE Conference on Antenna Measurements and Applications (CAMA), 2022, p.1-4
issn 2643-6795
language eng
recordid cdi_ieee_primary_10002658
source IEEE Xplore All Conference Series
subjects Antenna measurements
Correlation
decorrelation method
Location awareness
Multiple signal classification
MUSIC
near-field
Point-like scatterers
rank recovery
Scattering
title MUSIC Algorithm for Near Field Point-like Scatterers' Localization
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-11-13T22%3A23%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=MUSIC%20Algorithm%20for%20Near%20Field%20Point-like%20Scatterers'%20Localization&rft.btitle=2022%20IEEE%20Conference%20on%20Antenna%20Measurements%20and%20Applications%20(CAMA)&rft.au=Dell'Aversano,%20Angela&rft.date=2022-12-14&rft.spage=1&rft.epage=4&rft.pages=1-4&rft.eissn=2643-6795&rft_id=info:doi/10.1109/CAMA56352.2022.10002658&rft.eisbn=1665490373&rft.eisbn_list=9781665490375&rft_dat=%3Cieee_CHZPO%3E10002658%3C/ieee_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i499-ba6345f84f2a6f42a2141c230edbf2e6788582a6b08b4a06804f78cd776c60143%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=10002658&rfr_iscdi=true