Loading…

Synthesis and use of pHEMA microbeads with human EA.hy 926 endothelial cells

Cancer has become a major problem in public health and the resulting bone metastases a worsening factor. Facing it, different strategies have been proposed and mechanisms involved in tumor angiogenesis are being studied. Enhanced permeability retention (EPR) effect is a key step in designing new ant...

Full description

Saved in:
Bibliographic Details
Published in:Journal of biomedical materials research. Part B, Applied biomaterials Applied biomaterials, 2009-05, Vol.89B (2), p.501-507
Main Authors: Nyangoga, Hervé, Zecheru, Teodora, Filmon, Robert, Baslé, Michel-Félix, Cincu, Corneliu, Chappard, Daniel
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Cancer has become a major problem in public health and the resulting bone metastases a worsening factor. Facing it, different strategies have been proposed and mechanisms involved in tumor angiogenesis are being studied. Enhanced permeability retention (EPR) effect is a key step in designing new anticancer drugs. We have prepared poly 2‐hydroxyethyl methacrylate (pHEMA) microbeads to target human endothelial EA.hy 926 cells, a cell line derived from human umbilical vein endothelial cells. Microbeads were synthesized by emulsion precipitation method and carried positive or negative charges. EA.hy 926 cells were cultured in 24‐well plates and microbeads were deposited on cells at various times. Scanning and transmission electron microscopy, flow cytometry, confocal microscopy, and three‐dimensional (3D) reconstruction were used to characterize microbeads and their location outside and inside cells. Microbeads were uptaken by endothelial cells with a better internalization for negatively charged microbeads. 3D reconstruction of confocal optical sections clearly evidenced the uptake and internalization of microbeads by endothelial cells. pHEMA microbeads could represent potential drug carrier in tumor model of metastases. © 2008 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 2009
ISSN:1552-4973
1552-4981
1552-4981
DOI:10.1002/jbm.b.31240