Loading…

Identification of elastic properties of interphase and interface in graphene-polymer nanocomposites by atomistic simulations

This article tackles the problem of identification of elastic continuum model by atomistic simulations for graphene polymer nanocomposite. The Atomistic Local IdentificAtion of Stiffness method, so-called ALIAS method, is developed to estimate the local stiffness tensor at all points of polymer grap...

Full description

Saved in:
Bibliographic Details
Published in:Composites science and technology 2021-09, Vol.213, p.108943, Article 108943
Main Authors: Lu, Xiaoxin, Detrez, Fabrice, Yvonnet, Julien, Bai, Jinbo
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c434t-d2cb6f7dfe01b1093e4027bd386ee43e0ac12d5f0962cf6e4a783ffb50c925d43
cites cdi_FETCH-LOGICAL-c434t-d2cb6f7dfe01b1093e4027bd386ee43e0ac12d5f0962cf6e4a783ffb50c925d43
container_end_page
container_issue
container_start_page 108943
container_title Composites science and technology
container_volume 213
creator Lu, Xiaoxin
Detrez, Fabrice
Yvonnet, Julien
Bai, Jinbo
description This article tackles the problem of identification of elastic continuum model by atomistic simulations for graphene polymer nanocomposite. The Atomistic Local IdentificAtion of Stiffness method, so-called ALIAS method, is developed to estimate the local stiffness tensor at all points of polymer graphene laminate nanocomposite. Results suggest that the graphene can be modeled at continuum scale by a general imperfect interface with zero thickness. Moreover, the identification procedure reveals the existence of interphase on either side of the graphene with a thickness of 1 nm, which is one and a half times stiffer than the polymer bulk matrix. The identified continuum model is used to study the effective elastic properties of nanocomposites with sandwich microstructure. This study at continuum scale reveals a softening effect due the very low stiffness of slip along graphene plane. The softening due to the interfaces is preponderant in relation to the interphase stiffening. Finally, the continuum model also suggests that the wrinkling of graphene increases the stiffness of nanocomposites. [Display omitted] •Identification of a continuum elastic model of nanocomposite by atomistic simulations.•Existence of interphase one and a half times stiffer with a thickness of 1 nm.•The interface between graphene and polymer has a softening effect.•The interface softening is preponderant in relation to the interphase stiffening.•Wrinkling of graphene increases the stiffness of graphene polymer nanocomposite.
doi_str_mv 10.1016/j.compscitech.2021.108943
format article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_03284839v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0266353821002992</els_id><sourcerecordid>2571136140</sourcerecordid><originalsourceid>FETCH-LOGICAL-c434t-d2cb6f7dfe01b1093e4027bd386ee43e0ac12d5f0962cf6e4a783ffb50c925d43</originalsourceid><addsrcrecordid>eNqNkUuLFDEUhYMo2I7-hxJXLqrn5lGv5dDozECDG12HVHJjp6lKyiQ90OCPNzUl4nJWSQ7fPTmXQ8hHCnsKtL0973WYl6RdRn3aM2C06P0g-Cuyo3031BQaeE12wNq25g3v35J3KZ0BoGsGtiO_Hw367KzTKrvgq2ArnFTKTldLDAvG7DCtqvMZ43JSCSvlzfa0SmO5VT-jWk7osV7CdJ0xVl75sOYKqeRK1XitVA6ze7ZNbr5Mz5-l9-SNVVPCD3_PG_Lj65fvh4f6-O3-8XB3rLXgIteG6bG1nbEIdKQwcBTAutHwvkUUHEFpykxjYWiZti0K1fXc2rEBPbDGCH5DPm--JzXJJbpZxasMysmHu6NcNeCsFz0fnmhhP21sWf_XBVOW53CJvsSTrOko5S0VUKhho3QMKUW0_2wpyLUYeZb_FSPXYuRWTJk9bLNYVn5yGGWh0Gs0LqLO0gT3Apc_8raf5Q</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2571136140</pqid></control><display><type>article</type><title>Identification of elastic properties of interphase and interface in graphene-polymer nanocomposites by atomistic simulations</title><source>ScienceDirect Freedom Collection</source><creator>Lu, Xiaoxin ; Detrez, Fabrice ; Yvonnet, Julien ; Bai, Jinbo</creator><creatorcontrib>Lu, Xiaoxin ; Detrez, Fabrice ; Yvonnet, Julien ; Bai, Jinbo</creatorcontrib><description>This article tackles the problem of identification of elastic continuum model by atomistic simulations for graphene polymer nanocomposite. The Atomistic Local IdentificAtion of Stiffness method, so-called ALIAS method, is developed to estimate the local stiffness tensor at all points of polymer graphene laminate nanocomposite. Results suggest that the graphene can be modeled at continuum scale by a general imperfect interface with zero thickness. Moreover, the identification procedure reveals the existence of interphase on either side of the graphene with a thickness of 1 nm, which is one and a half times stiffer than the polymer bulk matrix. The identified continuum model is used to study the effective elastic properties of nanocomposites with sandwich microstructure. This study at continuum scale reveals a softening effect due the very low stiffness of slip along graphene plane. The softening due to the interfaces is preponderant in relation to the interphase stiffening. Finally, the continuum model also suggests that the wrinkling of graphene increases the stiffness of nanocomposites. [Display omitted] •Identification of a continuum elastic model of nanocomposite by atomistic simulations.•Existence of interphase one and a half times stiffer with a thickness of 1 nm.•The interface between graphene and polymer has a softening effect.•The interface softening is preponderant in relation to the interphase stiffening.•Wrinkling of graphene increases the stiffness of graphene polymer nanocomposite.</description><identifier>ISSN: 0266-3538</identifier><identifier>EISSN: 1879-1050</identifier><identifier>DOI: 10.1016/j.compscitech.2021.108943</identifier><language>eng</language><publisher>Barking: Elsevier Ltd</publisher><subject>Continuum modeling ; Elastic properties ; Graphene ; Interface ; Interphase ; Materials elasticity ; Mechanical properties ; Mechanics ; Mechanics of materials ; Nanocomposites ; Physics ; Polymer nanocomposites ; Polymers ; Softening ; Stiffening ; Stiffness ; Tensors ; Thickness</subject><ispartof>Composites science and technology, 2021-09, Vol.213, p.108943, Article 108943</ispartof><rights>2021 Elsevier Ltd</rights><rights>Copyright Elsevier BV Sep 8, 2021</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c434t-d2cb6f7dfe01b1093e4027bd386ee43e0ac12d5f0962cf6e4a783ffb50c925d43</citedby><cites>FETCH-LOGICAL-c434t-d2cb6f7dfe01b1093e4027bd386ee43e0ac12d5f0962cf6e4a783ffb50c925d43</cites><orcidid>0000-0003-4745-8054</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,315,786,790,891,27957,27958</link.rule.ids><backlink>$$Uhttps://hal.science/hal-03284839$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Lu, Xiaoxin</creatorcontrib><creatorcontrib>Detrez, Fabrice</creatorcontrib><creatorcontrib>Yvonnet, Julien</creatorcontrib><creatorcontrib>Bai, Jinbo</creatorcontrib><title>Identification of elastic properties of interphase and interface in graphene-polymer nanocomposites by atomistic simulations</title><title>Composites science and technology</title><description>This article tackles the problem of identification of elastic continuum model by atomistic simulations for graphene polymer nanocomposite. The Atomistic Local IdentificAtion of Stiffness method, so-called ALIAS method, is developed to estimate the local stiffness tensor at all points of polymer graphene laminate nanocomposite. Results suggest that the graphene can be modeled at continuum scale by a general imperfect interface with zero thickness. Moreover, the identification procedure reveals the existence of interphase on either side of the graphene with a thickness of 1 nm, which is one and a half times stiffer than the polymer bulk matrix. The identified continuum model is used to study the effective elastic properties of nanocomposites with sandwich microstructure. This study at continuum scale reveals a softening effect due the very low stiffness of slip along graphene plane. The softening due to the interfaces is preponderant in relation to the interphase stiffening. Finally, the continuum model also suggests that the wrinkling of graphene increases the stiffness of nanocomposites. [Display omitted] •Identification of a continuum elastic model of nanocomposite by atomistic simulations.•Existence of interphase one and a half times stiffer with a thickness of 1 nm.•The interface between graphene and polymer has a softening effect.•The interface softening is preponderant in relation to the interphase stiffening.•Wrinkling of graphene increases the stiffness of graphene polymer nanocomposite.</description><subject>Continuum modeling</subject><subject>Elastic properties</subject><subject>Graphene</subject><subject>Interface</subject><subject>Interphase</subject><subject>Materials elasticity</subject><subject>Mechanical properties</subject><subject>Mechanics</subject><subject>Mechanics of materials</subject><subject>Nanocomposites</subject><subject>Physics</subject><subject>Polymer nanocomposites</subject><subject>Polymers</subject><subject>Softening</subject><subject>Stiffening</subject><subject>Stiffness</subject><subject>Tensors</subject><subject>Thickness</subject><issn>0266-3538</issn><issn>1879-1050</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNqNkUuLFDEUhYMo2I7-hxJXLqrn5lGv5dDozECDG12HVHJjp6lKyiQ90OCPNzUl4nJWSQ7fPTmXQ8hHCnsKtL0973WYl6RdRn3aM2C06P0g-Cuyo3031BQaeE12wNq25g3v35J3KZ0BoGsGtiO_Hw367KzTKrvgq2ArnFTKTldLDAvG7DCtqvMZ43JSCSvlzfa0SmO5VT-jWk7osV7CdJ0xVl75sOYKqeRK1XitVA6ze7ZNbr5Mz5-l9-SNVVPCD3_PG_Lj65fvh4f6-O3-8XB3rLXgIteG6bG1nbEIdKQwcBTAutHwvkUUHEFpykxjYWiZti0K1fXc2rEBPbDGCH5DPm--JzXJJbpZxasMysmHu6NcNeCsFz0fnmhhP21sWf_XBVOW53CJvsSTrOko5S0VUKhho3QMKUW0_2wpyLUYeZb_FSPXYuRWTJk9bLNYVn5yGGWh0Gs0LqLO0gT3Apc_8raf5Q</recordid><startdate>20210908</startdate><enddate>20210908</enddate><creator>Lu, Xiaoxin</creator><creator>Detrez, Fabrice</creator><creator>Yvonnet, Julien</creator><creator>Bai, Jinbo</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><general>Elsevier</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>JG9</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0003-4745-8054</orcidid></search><sort><creationdate>20210908</creationdate><title>Identification of elastic properties of interphase and interface in graphene-polymer nanocomposites by atomistic simulations</title><author>Lu, Xiaoxin ; Detrez, Fabrice ; Yvonnet, Julien ; Bai, Jinbo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c434t-d2cb6f7dfe01b1093e4027bd386ee43e0ac12d5f0962cf6e4a783ffb50c925d43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Continuum modeling</topic><topic>Elastic properties</topic><topic>Graphene</topic><topic>Interface</topic><topic>Interphase</topic><topic>Materials elasticity</topic><topic>Mechanical properties</topic><topic>Mechanics</topic><topic>Mechanics of materials</topic><topic>Nanocomposites</topic><topic>Physics</topic><topic>Polymer nanocomposites</topic><topic>Polymers</topic><topic>Softening</topic><topic>Stiffening</topic><topic>Stiffness</topic><topic>Tensors</topic><topic>Thickness</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lu, Xiaoxin</creatorcontrib><creatorcontrib>Detrez, Fabrice</creatorcontrib><creatorcontrib>Yvonnet, Julien</creatorcontrib><creatorcontrib>Bai, Jinbo</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Composites science and technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lu, Xiaoxin</au><au>Detrez, Fabrice</au><au>Yvonnet, Julien</au><au>Bai, Jinbo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Identification of elastic properties of interphase and interface in graphene-polymer nanocomposites by atomistic simulations</atitle><jtitle>Composites science and technology</jtitle><date>2021-09-08</date><risdate>2021</risdate><volume>213</volume><spage>108943</spage><pages>108943-</pages><artnum>108943</artnum><issn>0266-3538</issn><eissn>1879-1050</eissn><abstract>This article tackles the problem of identification of elastic continuum model by atomistic simulations for graphene polymer nanocomposite. The Atomistic Local IdentificAtion of Stiffness method, so-called ALIAS method, is developed to estimate the local stiffness tensor at all points of polymer graphene laminate nanocomposite. Results suggest that the graphene can be modeled at continuum scale by a general imperfect interface with zero thickness. Moreover, the identification procedure reveals the existence of interphase on either side of the graphene with a thickness of 1 nm, which is one and a half times stiffer than the polymer bulk matrix. The identified continuum model is used to study the effective elastic properties of nanocomposites with sandwich microstructure. This study at continuum scale reveals a softening effect due the very low stiffness of slip along graphene plane. The softening due to the interfaces is preponderant in relation to the interphase stiffening. Finally, the continuum model also suggests that the wrinkling of graphene increases the stiffness of nanocomposites. [Display omitted] •Identification of a continuum elastic model of nanocomposite by atomistic simulations.•Existence of interphase one and a half times stiffer with a thickness of 1 nm.•The interface between graphene and polymer has a softening effect.•The interface softening is preponderant in relation to the interphase stiffening.•Wrinkling of graphene increases the stiffness of graphene polymer nanocomposite.</abstract><cop>Barking</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.compscitech.2021.108943</doi><orcidid>https://orcid.org/0000-0003-4745-8054</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0266-3538
ispartof Composites science and technology, 2021-09, Vol.213, p.108943, Article 108943
issn 0266-3538
1879-1050
language eng
recordid cdi_hal_primary_oai_HAL_hal_03284839v1
source ScienceDirect Freedom Collection
subjects Continuum modeling
Elastic properties
Graphene
Interface
Interphase
Materials elasticity
Mechanical properties
Mechanics
Mechanics of materials
Nanocomposites
Physics
Polymer nanocomposites
Polymers
Softening
Stiffening
Stiffness
Tensors
Thickness
title Identification of elastic properties of interphase and interface in graphene-polymer nanocomposites by atomistic simulations
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-09-22T08%3A49%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Identification%20of%20elastic%20properties%20of%20interphase%20and%20interface%20in%20graphene-polymer%20nanocomposites%20by%20atomistic%20simulations&rft.jtitle=Composites%20science%20and%20technology&rft.au=Lu,%20Xiaoxin&rft.date=2021-09-08&rft.volume=213&rft.spage=108943&rft.pages=108943-&rft.artnum=108943&rft.issn=0266-3538&rft.eissn=1879-1050&rft_id=info:doi/10.1016/j.compscitech.2021.108943&rft_dat=%3Cproquest_hal_p%3E2571136140%3C/proquest_hal_p%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c434t-d2cb6f7dfe01b1093e4027bd386ee43e0ac12d5f0962cf6e4a783ffb50c925d43%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2571136140&rft_id=info:pmid/&rfr_iscdi=true