Loading…

Convergence issues in derivatives of Monte Carlo null-collision integral formulations: A solution

•Monte Carlo algorithm is used to evaluate simultaneously the observable and its Jacobian.•Null-collision algorithm (NCA) are very successful when dealing with linear-physics in heterogeneous media.•We showed that NCA are sources of convergence difficulties to sensitivity-evaluations of optical para...

Full description

Saved in:
Bibliographic Details
Published in:Journal of computational physics 2020-07, Vol.413, p.109463-20/109463, Article 109463
Main Authors: Tregan, J.-M., Blanco, S., Dauchet, J., El Hafi, M., Fournier, R., Ibarrart, L., Lapeyre, P., Villefranque, N.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c402t-141a4d9f0491f680ae36c69cbec2ff4f533041f07b3c100ac8ab45d988d86f8b3
cites cdi_FETCH-LOGICAL-c402t-141a4d9f0491f680ae36c69cbec2ff4f533041f07b3c100ac8ab45d988d86f8b3
container_end_page 20/109463
container_issue
container_start_page 109463
container_title Journal of computational physics
container_volume 413
creator Tregan, J.-M.
Blanco, S.
Dauchet, J.
El Hafi, M.
Fournier, R.
Ibarrart, L.
Lapeyre, P.
Villefranque, N.
description •Monte Carlo algorithm is used to evaluate simultaneously the observable and its Jacobian.•Null-collision algorithm (NCA) are very successful when dealing with linear-physics in heterogeneous media.•We showed that NCA are sources of convergence difficulties to sensitivity-evaluations of optical parameter.•We propose an alternative solution. When a Monte Carlo algorithm is used to evaluate a physical observable A, it is possible to slightly modify the algorithm so that it evaluates simultaneously A and the derivatives ∂ςA of A with respect to each problem-parameter ς. The principle is the following: Monte Carlo considers A as the expectation of a random variable, this expectation is an integral, this integral can be derivated as function of the problem-parameter to give a new integral, and this new integral can in turn be evaluated using Monte Carlo. The two Monte Carlo computations (of A and ∂ςA) are simultaneous when they make use of the same random samples, i.e. when the two integrals have the exact same structure. It was proven theoretically that this was always possible, but nothing ensures that the two estimators have the same convergence properties: even when a large enough sample-size is used so that A is evaluated very accurately, the evaluation of ∂ςA using the same sample can remain inaccurate. We discuss here such a pathological example: null-collision algorithms are very successful when dealing with radiative transfer in heterogeneous media, but they are sources of convergence difficulties as soon as sensitivity-evaluations are considered. We analyse theoretically these convergence difficulties and propose an alternative solution.
doi_str_mv 10.1016/j.jcp.2020.109463
format article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_02546081v2</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0021999120302370</els_id><sourcerecordid>2442333187</sourcerecordid><originalsourceid>FETCH-LOGICAL-c402t-141a4d9f0491f680ae36c69cbec2ff4f533041f07b3c100ac8ab45d988d86f8b3</originalsourceid><addsrcrecordid>eNp9kE9LwzAYh4MoOKcfwFvAk4fON3_WpXoaQ50w8aLnkKWJpsRmJm3Bb29KxaOn5Bee30veB6FLAgsCpLxpFo0-LCjQMVe8ZEdoli9Q0BUpj9EMgJKiqipyis5SagBALLmYIbUJ7WDiu2m1wS6l3iTsWlyb6AbVuSHHYPFzaDuDNyr6gNve-0IH711yoc1wZ96j8tiG-Nn73AltusVrnILvx3COTqzyyVz8nnP09nD_utkWu5fHp816V2gOtCsIJ4rXlQVeEVsKUIaVuqz03mhqLbdLxoATC6s90wRAaaH2fFlXQtSitGLP5uh6mvuhvDxE96nitwzKye16J8c3oEtegiADzezVxB5i-Mord7IJfWzz9yTlnDLGiFhlikyUjiGlaOzfWAJytC4bma3L0bqcrOfO3dQxedXBmSiTdqPc2kWjO1kH90_7B-CVijU</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2442333187</pqid></control><display><type>article</type><title>Convergence issues in derivatives of Monte Carlo null-collision integral formulations: A solution</title><source>ScienceDirect Journals</source><creator>Tregan, J.-M. ; Blanco, S. ; Dauchet, J. ; El Hafi, M. ; Fournier, R. ; Ibarrart, L. ; Lapeyre, P. ; Villefranque, N.</creator><creatorcontrib>Tregan, J.-M. ; Blanco, S. ; Dauchet, J. ; El Hafi, M. ; Fournier, R. ; Ibarrart, L. ; Lapeyre, P. ; Villefranque, N.</creatorcontrib><description>•Monte Carlo algorithm is used to evaluate simultaneously the observable and its Jacobian.•Null-collision algorithm (NCA) are very successful when dealing with linear-physics in heterogeneous media.•We showed that NCA are sources of convergence difficulties to sensitivity-evaluations of optical parameter.•We propose an alternative solution. When a Monte Carlo algorithm is used to evaluate a physical observable A, it is possible to slightly modify the algorithm so that it evaluates simultaneously A and the derivatives ∂ςA of A with respect to each problem-parameter ς. The principle is the following: Monte Carlo considers A as the expectation of a random variable, this expectation is an integral, this integral can be derivated as function of the problem-parameter to give a new integral, and this new integral can in turn be evaluated using Monte Carlo. The two Monte Carlo computations (of A and ∂ςA) are simultaneous when they make use of the same random samples, i.e. when the two integrals have the exact same structure. It was proven theoretically that this was always possible, but nothing ensures that the two estimators have the same convergence properties: even when a large enough sample-size is used so that A is evaluated very accurately, the evaluation of ∂ςA using the same sample can remain inaccurate. We discuss here such a pathological example: null-collision algorithms are very successful when dealing with radiative transfer in heterogeneous media, but they are sources of convergence difficulties as soon as sensitivity-evaluations are considered. We analyse theoretically these convergence difficulties and propose an alternative solution.</description><identifier>ISSN: 0021-9991</identifier><identifier>EISSN: 1090-2716</identifier><identifier>DOI: 10.1016/j.jcp.2020.109463</identifier><language>eng</language><publisher>Cambridge: Elsevier Inc</publisher><subject>Algorithms ; Computational physics ; Convergence ; Derivatives ; Direct derivatives ; Engineering Sciences ; Integral formulation ; Integrals ; Monte Carlo method ; Null-collision algorithm ; Parameters ; Radiative transfer ; Random variables ; Sensitivity</subject><ispartof>Journal of computational physics, 2020-07, Vol.413, p.109463-20/109463, Article 109463</ispartof><rights>2020 Elsevier Inc.</rights><rights>Copyright Elsevier Science Ltd. Jul 15, 2020</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c402t-141a4d9f0491f680ae36c69cbec2ff4f533041f07b3c100ac8ab45d988d86f8b3</citedby><cites>FETCH-LOGICAL-c402t-141a4d9f0491f680ae36c69cbec2ff4f533041f07b3c100ac8ab45d988d86f8b3</cites><orcidid>0000-0002-8191-8280 ; 0000-0002-4687-2635 ; 0000-0001-9675-9721</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,315,786,790,891,27957,27958</link.rule.ids><backlink>$$Uhttps://imt-mines-albi.hal.science/hal-02546081$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Tregan, J.-M.</creatorcontrib><creatorcontrib>Blanco, S.</creatorcontrib><creatorcontrib>Dauchet, J.</creatorcontrib><creatorcontrib>El Hafi, M.</creatorcontrib><creatorcontrib>Fournier, R.</creatorcontrib><creatorcontrib>Ibarrart, L.</creatorcontrib><creatorcontrib>Lapeyre, P.</creatorcontrib><creatorcontrib>Villefranque, N.</creatorcontrib><title>Convergence issues in derivatives of Monte Carlo null-collision integral formulations: A solution</title><title>Journal of computational physics</title><description>•Monte Carlo algorithm is used to evaluate simultaneously the observable and its Jacobian.•Null-collision algorithm (NCA) are very successful when dealing with linear-physics in heterogeneous media.•We showed that NCA are sources of convergence difficulties to sensitivity-evaluations of optical parameter.•We propose an alternative solution. When a Monte Carlo algorithm is used to evaluate a physical observable A, it is possible to slightly modify the algorithm so that it evaluates simultaneously A and the derivatives ∂ςA of A with respect to each problem-parameter ς. The principle is the following: Monte Carlo considers A as the expectation of a random variable, this expectation is an integral, this integral can be derivated as function of the problem-parameter to give a new integral, and this new integral can in turn be evaluated using Monte Carlo. The two Monte Carlo computations (of A and ∂ςA) are simultaneous when they make use of the same random samples, i.e. when the two integrals have the exact same structure. It was proven theoretically that this was always possible, but nothing ensures that the two estimators have the same convergence properties: even when a large enough sample-size is used so that A is evaluated very accurately, the evaluation of ∂ςA using the same sample can remain inaccurate. We discuss here such a pathological example: null-collision algorithms are very successful when dealing with radiative transfer in heterogeneous media, but they are sources of convergence difficulties as soon as sensitivity-evaluations are considered. We analyse theoretically these convergence difficulties and propose an alternative solution.</description><subject>Algorithms</subject><subject>Computational physics</subject><subject>Convergence</subject><subject>Derivatives</subject><subject>Direct derivatives</subject><subject>Engineering Sciences</subject><subject>Integral formulation</subject><subject>Integrals</subject><subject>Monte Carlo method</subject><subject>Null-collision algorithm</subject><subject>Parameters</subject><subject>Radiative transfer</subject><subject>Random variables</subject><subject>Sensitivity</subject><issn>0021-9991</issn><issn>1090-2716</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kE9LwzAYh4MoOKcfwFvAk4fON3_WpXoaQ50w8aLnkKWJpsRmJm3Bb29KxaOn5Bee30veB6FLAgsCpLxpFo0-LCjQMVe8ZEdoli9Q0BUpj9EMgJKiqipyis5SagBALLmYIbUJ7WDiu2m1wS6l3iTsWlyb6AbVuSHHYPFzaDuDNyr6gNve-0IH711yoc1wZ96j8tiG-Nn73AltusVrnILvx3COTqzyyVz8nnP09nD_utkWu5fHp816V2gOtCsIJ4rXlQVeEVsKUIaVuqz03mhqLbdLxoATC6s90wRAaaH2fFlXQtSitGLP5uh6mvuhvDxE96nitwzKye16J8c3oEtegiADzezVxB5i-Mord7IJfWzz9yTlnDLGiFhlikyUjiGlaOzfWAJytC4bma3L0bqcrOfO3dQxedXBmSiTdqPc2kWjO1kH90_7B-CVijU</recordid><startdate>20200715</startdate><enddate>20200715</enddate><creator>Tregan, J.-M.</creator><creator>Blanco, S.</creator><creator>Dauchet, J.</creator><creator>El Hafi, M.</creator><creator>Fournier, R.</creator><creator>Ibarrart, L.</creator><creator>Lapeyre, P.</creator><creator>Villefranque, N.</creator><general>Elsevier Inc</general><general>Elsevier Science Ltd</general><general>Elsevier</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0002-8191-8280</orcidid><orcidid>https://orcid.org/0000-0002-4687-2635</orcidid><orcidid>https://orcid.org/0000-0001-9675-9721</orcidid></search><sort><creationdate>20200715</creationdate><title>Convergence issues in derivatives of Monte Carlo null-collision integral formulations: A solution</title><author>Tregan, J.-M. ; Blanco, S. ; Dauchet, J. ; El Hafi, M. ; Fournier, R. ; Ibarrart, L. ; Lapeyre, P. ; Villefranque, N.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c402t-141a4d9f0491f680ae36c69cbec2ff4f533041f07b3c100ac8ab45d988d86f8b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Algorithms</topic><topic>Computational physics</topic><topic>Convergence</topic><topic>Derivatives</topic><topic>Direct derivatives</topic><topic>Engineering Sciences</topic><topic>Integral formulation</topic><topic>Integrals</topic><topic>Monte Carlo method</topic><topic>Null-collision algorithm</topic><topic>Parameters</topic><topic>Radiative transfer</topic><topic>Random variables</topic><topic>Sensitivity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tregan, J.-M.</creatorcontrib><creatorcontrib>Blanco, S.</creatorcontrib><creatorcontrib>Dauchet, J.</creatorcontrib><creatorcontrib>El Hafi, M.</creatorcontrib><creatorcontrib>Fournier, R.</creatorcontrib><creatorcontrib>Ibarrart, L.</creatorcontrib><creatorcontrib>Lapeyre, P.</creatorcontrib><creatorcontrib>Villefranque, N.</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Journal of computational physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tregan, J.-M.</au><au>Blanco, S.</au><au>Dauchet, J.</au><au>El Hafi, M.</au><au>Fournier, R.</au><au>Ibarrart, L.</au><au>Lapeyre, P.</au><au>Villefranque, N.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Convergence issues in derivatives of Monte Carlo null-collision integral formulations: A solution</atitle><jtitle>Journal of computational physics</jtitle><date>2020-07-15</date><risdate>2020</risdate><volume>413</volume><spage>109463</spage><epage>20/109463</epage><pages>109463-20/109463</pages><artnum>109463</artnum><issn>0021-9991</issn><eissn>1090-2716</eissn><abstract>•Monte Carlo algorithm is used to evaluate simultaneously the observable and its Jacobian.•Null-collision algorithm (NCA) are very successful when dealing with linear-physics in heterogeneous media.•We showed that NCA are sources of convergence difficulties to sensitivity-evaluations of optical parameter.•We propose an alternative solution. When a Monte Carlo algorithm is used to evaluate a physical observable A, it is possible to slightly modify the algorithm so that it evaluates simultaneously A and the derivatives ∂ςA of A with respect to each problem-parameter ς. The principle is the following: Monte Carlo considers A as the expectation of a random variable, this expectation is an integral, this integral can be derivated as function of the problem-parameter to give a new integral, and this new integral can in turn be evaluated using Monte Carlo. The two Monte Carlo computations (of A and ∂ςA) are simultaneous when they make use of the same random samples, i.e. when the two integrals have the exact same structure. It was proven theoretically that this was always possible, but nothing ensures that the two estimators have the same convergence properties: even when a large enough sample-size is used so that A is evaluated very accurately, the evaluation of ∂ςA using the same sample can remain inaccurate. We discuss here such a pathological example: null-collision algorithms are very successful when dealing with radiative transfer in heterogeneous media, but they are sources of convergence difficulties as soon as sensitivity-evaluations are considered. We analyse theoretically these convergence difficulties and propose an alternative solution.</abstract><cop>Cambridge</cop><pub>Elsevier Inc</pub><doi>10.1016/j.jcp.2020.109463</doi><orcidid>https://orcid.org/0000-0002-8191-8280</orcidid><orcidid>https://orcid.org/0000-0002-4687-2635</orcidid><orcidid>https://orcid.org/0000-0001-9675-9721</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0021-9991
ispartof Journal of computational physics, 2020-07, Vol.413, p.109463-20/109463, Article 109463
issn 0021-9991
1090-2716
language eng
recordid cdi_hal_primary_oai_HAL_hal_02546081v2
source ScienceDirect Journals
subjects Algorithms
Computational physics
Convergence
Derivatives
Direct derivatives
Engineering Sciences
Integral formulation
Integrals
Monte Carlo method
Null-collision algorithm
Parameters
Radiative transfer
Random variables
Sensitivity
title Convergence issues in derivatives of Monte Carlo null-collision integral formulations: A solution
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-09-21T21%3A32%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Convergence%20issues%20in%20derivatives%20of%20Monte%20Carlo%20null-collision%20integral%20formulations:%20A%20solution&rft.jtitle=Journal%20of%20computational%20physics&rft.au=Tregan,%20J.-M.&rft.date=2020-07-15&rft.volume=413&rft.spage=109463&rft.epage=20/109463&rft.pages=109463-20/109463&rft.artnum=109463&rft.issn=0021-9991&rft.eissn=1090-2716&rft_id=info:doi/10.1016/j.jcp.2020.109463&rft_dat=%3Cproquest_hal_p%3E2442333187%3C/proquest_hal_p%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c402t-141a4d9f0491f680ae36c69cbec2ff4f533041f07b3c100ac8ab45d988d86f8b3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2442333187&rft_id=info:pmid/&rfr_iscdi=true