Loading…

Evolution of small RNA expression following hybridization and allopolyploidization: insights from Spartina species (Poaceae, Chloridoideae)

Key Message Differential expression of mi-RNAs targeting developmental processes and progressive downregulation of repeat-associated siRNAs following genome merger and genome duplication in the context of allopolyploid speciation in Spartina . The role of small RNAs on gene expression regulation and...

Full description

Saved in:
Bibliographic Details
Published in:Plant molecular biology 2020-01, Vol.102 (1-2), p.55-72
Main Authors: Cavé-Radet, Armand, Giraud, Delphine, Lima, Oscar, El Amrani, Abdelhak, Aïnouche, Malika, Salmon, Armel
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c475t-684931009cdad968bb80a266d726619f4e3f3a0e51e247a6e2765ff68f2ed4b53
cites cdi_FETCH-LOGICAL-c475t-684931009cdad968bb80a266d726619f4e3f3a0e51e247a6e2765ff68f2ed4b53
container_end_page 72
container_issue 1-2
container_start_page 55
container_title Plant molecular biology
container_volume 102
creator Cavé-Radet, Armand
Giraud, Delphine
Lima, Oscar
El Amrani, Abdelhak
Aïnouche, Malika
Salmon, Armel
description Key Message Differential expression of mi-RNAs targeting developmental processes and progressive downregulation of repeat-associated siRNAs following genome merger and genome duplication in the context of allopolyploid speciation in Spartina . The role of small RNAs on gene expression regulation and genome stability is arousing increased interest and is being explored in various plant systems. In spite of prominence of reticulate evolution and polyploidy that affects the evolutionary history of all plant lineages, very few studies analysed RNAi mechanisms with this respect. Here, we explored small RNAs diversity and expression in the context of recent allopolyploid speciation, using the Spartina system, which offers a unique opportunity to explore the immediate changes following hybridization and genome duplication. Small RNA-Seq analyses were conducted on hexaploid parental species ( S. alterniflora and S. maritima ), their F1 hybrid S. x townsendii , and the neoallododecaploid S. anglica . We identified 594 miRNAs, 2197 miRNA-target genes, and 3730 repeat-associated siRNAs (mostly targeting Class I/ Copia - Ivana - Copia - SIRE and LINEs elements). For both mi- and ra-siRNAs, we detected differential expression patterns following genome merger and genome duplication. These misregulations include non-additive expression of miRNAs in the F1 hybrid and additional changes in the allopolyploid targeting developmental processes. Expression of repeat-associated siRNAs indicates a strengthen of transposable element repression during the allopolyploidization process. Altogether, these results confirm the central role small RNAs play in shaping regulatory changes in naturally formed recent allopolyploids.
doi_str_mv 10.1007/s11103-019-00931-w
format article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_02393952v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2343396873</sourcerecordid><originalsourceid>FETCH-LOGICAL-c475t-684931009cdad968bb80a266d726619f4e3f3a0e51e247a6e2765ff68f2ed4b53</originalsourceid><addsrcrecordid>eNp9kc1u1DAUhS0EokPhBVggS2xaiYD_kjjsRqOWIo0A8bO2nMSeceXEqZ10GF6hL82dpgwSCza2fP2d43t9EHpJyVtKSPkuUUoJzwitMkIqTrPdI7SgecmznDD5GC0ILcpMCMpO0LOUrgkBGS-eohNOSyGlrBbo7uI2-Gl0ocfB4tRp7_HXT0tsfg7RpHSo2-B92Ll-g7f7OrrW_dL3vO5bDHgYgt8PPhwv3mPXJ7fZjgnbGDr8bdBxdL3GaTCNMwmffQm6Mdq8wautD-AIWjieP0dPrPbJvHjYT9GPy4vvq6ts_fnDx9VynTWizMeskAKGhYmbVrdVIetaEs2Koi1hoZUVhluuicmpYaLUhWFlkVtbSMtMK-qcn6Lz2XervRqi63Tcq6Cdulqu1aFGGK94lbNbCuzZzA4x3EwmjapzqTHe696EKSnG4Y8lr5gE9PU_6HWYYg-TACU4h1ZLDhSbqSaGlKKxxw4oUYdY1RyrgljVfaxqB6JXD9ZT3Zn2KPmTIwB8BhJc9RsT_779H9vfXbevAg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2343396873</pqid></control><display><type>article</type><title>Evolution of small RNA expression following hybridization and allopolyploidization: insights from Spartina species (Poaceae, Chloridoideae)</title><source>Springer Link</source><creator>Cavé-Radet, Armand ; Giraud, Delphine ; Lima, Oscar ; El Amrani, Abdelhak ; Aïnouche, Malika ; Salmon, Armel</creator><creatorcontrib>Cavé-Radet, Armand ; Giraud, Delphine ; Lima, Oscar ; El Amrani, Abdelhak ; Aïnouche, Malika ; Salmon, Armel</creatorcontrib><description>Key Message Differential expression of mi-RNAs targeting developmental processes and progressive downregulation of repeat-associated siRNAs following genome merger and genome duplication in the context of allopolyploid speciation in Spartina . The role of small RNAs on gene expression regulation and genome stability is arousing increased interest and is being explored in various plant systems. In spite of prominence of reticulate evolution and polyploidy that affects the evolutionary history of all plant lineages, very few studies analysed RNAi mechanisms with this respect. Here, we explored small RNAs diversity and expression in the context of recent allopolyploid speciation, using the Spartina system, which offers a unique opportunity to explore the immediate changes following hybridization and genome duplication. Small RNA-Seq analyses were conducted on hexaploid parental species ( S. alterniflora and S. maritima ), their F1 hybrid S. x townsendii , and the neoallododecaploid S. anglica . We identified 594 miRNAs, 2197 miRNA-target genes, and 3730 repeat-associated siRNAs (mostly targeting Class I/ Copia - Ivana - Copia - SIRE and LINEs elements). For both mi- and ra-siRNAs, we detected differential expression patterns following genome merger and genome duplication. These misregulations include non-additive expression of miRNAs in the F1 hybrid and additional changes in the allopolyploid targeting developmental processes. Expression of repeat-associated siRNAs indicates a strengthen of transposable element repression during the allopolyploidization process. Altogether, these results confirm the central role small RNAs play in shaping regulatory changes in naturally formed recent allopolyploids.</description><identifier>ISSN: 0167-4412</identifier><identifier>EISSN: 1573-5028</identifier><identifier>DOI: 10.1007/s11103-019-00931-w</identifier><identifier>PMID: 31748889</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Base Sequence ; Biochemistry ; Biodiversity and Ecology ; Biomedical and Life Sciences ; DNA Transposable Elements ; DNA, Plant ; Environmental Sciences ; Evolutionary genetics ; Gene expression ; Gene Expression Regulation, Plant ; Gene regulation ; Genes, Plant - genetics ; Genome, Plant ; Genomes ; Genomic Instability ; Hybridization ; Hybridization, Genetic ; Life Sciences ; MicroRNAs - genetics ; MicroRNAs - metabolism ; miRNA ; Molecular Sequence Annotation ; Plant Pathology ; Plant Sciences ; Poaceae - genetics ; Poaceae - metabolism ; Polyploidy ; RNA, Plant - genetics ; RNA, Plant - metabolism ; RNA-mediated interference ; siRNA ; Spartina ; Speciation ; Transposons</subject><ispartof>Plant molecular biology, 2020-01, Vol.102 (1-2), p.55-72</ispartof><rights>Springer Nature B.V. 2019</rights><rights>Plant Molecular Biology is a copyright of Springer, (2019). All Rights Reserved.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c475t-684931009cdad968bb80a266d726619f4e3f3a0e51e247a6e2765ff68f2ed4b53</citedby><cites>FETCH-LOGICAL-c475t-684931009cdad968bb80a266d726619f4e3f3a0e51e247a6e2765ff68f2ed4b53</cites><orcidid>0000-0003-4479-0801 ; 0000-0001-6078-8379</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,315,786,790,891,27957,27958</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31748889$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://univ-rennes.hal.science/hal-02393952$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Cavé-Radet, Armand</creatorcontrib><creatorcontrib>Giraud, Delphine</creatorcontrib><creatorcontrib>Lima, Oscar</creatorcontrib><creatorcontrib>El Amrani, Abdelhak</creatorcontrib><creatorcontrib>Aïnouche, Malika</creatorcontrib><creatorcontrib>Salmon, Armel</creatorcontrib><title>Evolution of small RNA expression following hybridization and allopolyploidization: insights from Spartina species (Poaceae, Chloridoideae)</title><title>Plant molecular biology</title><addtitle>Plant Mol Biol</addtitle><addtitle>Plant Mol Biol</addtitle><description>Key Message Differential expression of mi-RNAs targeting developmental processes and progressive downregulation of repeat-associated siRNAs following genome merger and genome duplication in the context of allopolyploid speciation in Spartina . The role of small RNAs on gene expression regulation and genome stability is arousing increased interest and is being explored in various plant systems. In spite of prominence of reticulate evolution and polyploidy that affects the evolutionary history of all plant lineages, very few studies analysed RNAi mechanisms with this respect. Here, we explored small RNAs diversity and expression in the context of recent allopolyploid speciation, using the Spartina system, which offers a unique opportunity to explore the immediate changes following hybridization and genome duplication. Small RNA-Seq analyses were conducted on hexaploid parental species ( S. alterniflora and S. maritima ), their F1 hybrid S. x townsendii , and the neoallododecaploid S. anglica . We identified 594 miRNAs, 2197 miRNA-target genes, and 3730 repeat-associated siRNAs (mostly targeting Class I/ Copia - Ivana - Copia - SIRE and LINEs elements). For both mi- and ra-siRNAs, we detected differential expression patterns following genome merger and genome duplication. These misregulations include non-additive expression of miRNAs in the F1 hybrid and additional changes in the allopolyploid targeting developmental processes. Expression of repeat-associated siRNAs indicates a strengthen of transposable element repression during the allopolyploidization process. Altogether, these results confirm the central role small RNAs play in shaping regulatory changes in naturally formed recent allopolyploids.</description><subject>Base Sequence</subject><subject>Biochemistry</subject><subject>Biodiversity and Ecology</subject><subject>Biomedical and Life Sciences</subject><subject>DNA Transposable Elements</subject><subject>DNA, Plant</subject><subject>Environmental Sciences</subject><subject>Evolutionary genetics</subject><subject>Gene expression</subject><subject>Gene Expression Regulation, Plant</subject><subject>Gene regulation</subject><subject>Genes, Plant - genetics</subject><subject>Genome, Plant</subject><subject>Genomes</subject><subject>Genomic Instability</subject><subject>Hybridization</subject><subject>Hybridization, Genetic</subject><subject>Life Sciences</subject><subject>MicroRNAs - genetics</subject><subject>MicroRNAs - metabolism</subject><subject>miRNA</subject><subject>Molecular Sequence Annotation</subject><subject>Plant Pathology</subject><subject>Plant Sciences</subject><subject>Poaceae - genetics</subject><subject>Poaceae - metabolism</subject><subject>Polyploidy</subject><subject>RNA, Plant - genetics</subject><subject>RNA, Plant - metabolism</subject><subject>RNA-mediated interference</subject><subject>siRNA</subject><subject>Spartina</subject><subject>Speciation</subject><subject>Transposons</subject><issn>0167-4412</issn><issn>1573-5028</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kc1u1DAUhS0EokPhBVggS2xaiYD_kjjsRqOWIo0A8bO2nMSeceXEqZ10GF6hL82dpgwSCza2fP2d43t9EHpJyVtKSPkuUUoJzwitMkIqTrPdI7SgecmznDD5GC0ILcpMCMpO0LOUrgkBGS-eohNOSyGlrBbo7uI2-Gl0ocfB4tRp7_HXT0tsfg7RpHSo2-B92Ll-g7f7OrrW_dL3vO5bDHgYgt8PPhwv3mPXJ7fZjgnbGDr8bdBxdL3GaTCNMwmffQm6Mdq8wautD-AIWjieP0dPrPbJvHjYT9GPy4vvq6ts_fnDx9VynTWizMeskAKGhYmbVrdVIetaEs2Koi1hoZUVhluuicmpYaLUhWFlkVtbSMtMK-qcn6Lz2XervRqi63Tcq6Cdulqu1aFGGK94lbNbCuzZzA4x3EwmjapzqTHe696EKSnG4Y8lr5gE9PU_6HWYYg-TACU4h1ZLDhSbqSaGlKKxxw4oUYdY1RyrgljVfaxqB6JXD9ZT3Zn2KPmTIwB8BhJc9RsT_779H9vfXbevAg</recordid><startdate>20200101</startdate><enddate>20200101</enddate><creator>Cavé-Radet, Armand</creator><creator>Giraud, Delphine</creator><creator>Lima, Oscar</creator><creator>El Amrani, Abdelhak</creator><creator>Aïnouche, Malika</creator><creator>Salmon, Armel</creator><general>Springer Netherlands</general><general>Springer Nature B.V</general><general>Springer Verlag (Germany)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TM</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>M7P</scope><scope>MBDVC</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>RC3</scope><scope>7X8</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0003-4479-0801</orcidid><orcidid>https://orcid.org/0000-0001-6078-8379</orcidid></search><sort><creationdate>20200101</creationdate><title>Evolution of small RNA expression following hybridization and allopolyploidization: insights from Spartina species (Poaceae, Chloridoideae)</title><author>Cavé-Radet, Armand ; Giraud, Delphine ; Lima, Oscar ; El Amrani, Abdelhak ; Aïnouche, Malika ; Salmon, Armel</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c475t-684931009cdad968bb80a266d726619f4e3f3a0e51e247a6e2765ff68f2ed4b53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Base Sequence</topic><topic>Biochemistry</topic><topic>Biodiversity and Ecology</topic><topic>Biomedical and Life Sciences</topic><topic>DNA Transposable Elements</topic><topic>DNA, Plant</topic><topic>Environmental Sciences</topic><topic>Evolutionary genetics</topic><topic>Gene expression</topic><topic>Gene Expression Regulation, Plant</topic><topic>Gene regulation</topic><topic>Genes, Plant - genetics</topic><topic>Genome, Plant</topic><topic>Genomes</topic><topic>Genomic Instability</topic><topic>Hybridization</topic><topic>Hybridization, Genetic</topic><topic>Life Sciences</topic><topic>MicroRNAs - genetics</topic><topic>MicroRNAs - metabolism</topic><topic>miRNA</topic><topic>Molecular Sequence Annotation</topic><topic>Plant Pathology</topic><topic>Plant Sciences</topic><topic>Poaceae - genetics</topic><topic>Poaceae - metabolism</topic><topic>Polyploidy</topic><topic>RNA, Plant - genetics</topic><topic>RNA, Plant - metabolism</topic><topic>RNA-mediated interference</topic><topic>siRNA</topic><topic>Spartina</topic><topic>Speciation</topic><topic>Transposons</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cavé-Radet, Armand</creatorcontrib><creatorcontrib>Giraud, Delphine</creatorcontrib><creatorcontrib>Lima, Oscar</creatorcontrib><creatorcontrib>El Amrani, Abdelhak</creatorcontrib><creatorcontrib>Aïnouche, Malika</creatorcontrib><creatorcontrib>Salmon, Armel</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Nucleic Acids Abstracts</collection><collection>ProQuest_Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Biological Sciences</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>ProQuest research library</collection><collection>Biological Science Database</collection><collection>Research Library (Corporate)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Plant molecular biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cavé-Radet, Armand</au><au>Giraud, Delphine</au><au>Lima, Oscar</au><au>El Amrani, Abdelhak</au><au>Aïnouche, Malika</au><au>Salmon, Armel</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Evolution of small RNA expression following hybridization and allopolyploidization: insights from Spartina species (Poaceae, Chloridoideae)</atitle><jtitle>Plant molecular biology</jtitle><stitle>Plant Mol Biol</stitle><addtitle>Plant Mol Biol</addtitle><date>2020-01-01</date><risdate>2020</risdate><volume>102</volume><issue>1-2</issue><spage>55</spage><epage>72</epage><pages>55-72</pages><issn>0167-4412</issn><eissn>1573-5028</eissn><notes>ObjectType-Article-1</notes><notes>SourceType-Scholarly Journals-1</notes><notes>ObjectType-Feature-2</notes><notes>content type line 23</notes><abstract>Key Message Differential expression of mi-RNAs targeting developmental processes and progressive downregulation of repeat-associated siRNAs following genome merger and genome duplication in the context of allopolyploid speciation in Spartina . The role of small RNAs on gene expression regulation and genome stability is arousing increased interest and is being explored in various plant systems. In spite of prominence of reticulate evolution and polyploidy that affects the evolutionary history of all plant lineages, very few studies analysed RNAi mechanisms with this respect. Here, we explored small RNAs diversity and expression in the context of recent allopolyploid speciation, using the Spartina system, which offers a unique opportunity to explore the immediate changes following hybridization and genome duplication. Small RNA-Seq analyses were conducted on hexaploid parental species ( S. alterniflora and S. maritima ), their F1 hybrid S. x townsendii , and the neoallododecaploid S. anglica . We identified 594 miRNAs, 2197 miRNA-target genes, and 3730 repeat-associated siRNAs (mostly targeting Class I/ Copia - Ivana - Copia - SIRE and LINEs elements). For both mi- and ra-siRNAs, we detected differential expression patterns following genome merger and genome duplication. These misregulations include non-additive expression of miRNAs in the F1 hybrid and additional changes in the allopolyploid targeting developmental processes. Expression of repeat-associated siRNAs indicates a strengthen of transposable element repression during the allopolyploidization process. Altogether, these results confirm the central role small RNAs play in shaping regulatory changes in naturally formed recent allopolyploids.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><pmid>31748889</pmid><doi>10.1007/s11103-019-00931-w</doi><tpages>18</tpages><orcidid>https://orcid.org/0000-0003-4479-0801</orcidid><orcidid>https://orcid.org/0000-0001-6078-8379</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0167-4412
ispartof Plant molecular biology, 2020-01, Vol.102 (1-2), p.55-72
issn 0167-4412
1573-5028
language eng
recordid cdi_hal_primary_oai_HAL_hal_02393952v1
source Springer Link
subjects Base Sequence
Biochemistry
Biodiversity and Ecology
Biomedical and Life Sciences
DNA Transposable Elements
DNA, Plant
Environmental Sciences
Evolutionary genetics
Gene expression
Gene Expression Regulation, Plant
Gene regulation
Genes, Plant - genetics
Genome, Plant
Genomes
Genomic Instability
Hybridization
Hybridization, Genetic
Life Sciences
MicroRNAs - genetics
MicroRNAs - metabolism
miRNA
Molecular Sequence Annotation
Plant Pathology
Plant Sciences
Poaceae - genetics
Poaceae - metabolism
Polyploidy
RNA, Plant - genetics
RNA, Plant - metabolism
RNA-mediated interference
siRNA
Spartina
Speciation
Transposons
title Evolution of small RNA expression following hybridization and allopolyploidization: insights from Spartina species (Poaceae, Chloridoideae)
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-09-22T07%3A42%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Evolution%20of%20small%20RNA%20expression%20following%20hybridization%20and%20allopolyploidization:%20insights%20from%20Spartina%20species%20(Poaceae,%20Chloridoideae)&rft.jtitle=Plant%20molecular%20biology&rft.au=Cav%C3%A9-Radet,%20Armand&rft.date=2020-01-01&rft.volume=102&rft.issue=1-2&rft.spage=55&rft.epage=72&rft.pages=55-72&rft.issn=0167-4412&rft.eissn=1573-5028&rft_id=info:doi/10.1007/s11103-019-00931-w&rft_dat=%3Cproquest_hal_p%3E2343396873%3C/proquest_hal_p%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c475t-684931009cdad968bb80a266d726619f4e3f3a0e51e247a6e2765ff68f2ed4b53%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2343396873&rft_id=info:pmid/31748889&rfr_iscdi=true