Loading…
Semi-Empirical Born–Oppenheimer Molecular Dynamics (SEBOMD) within the Amber Biomolecular Package
Semi-empirical quantum methods from the neglect of differential diatomic overlap (NDDO) family such as MNDO, AM1, or PM3 are fast albeit approximate quantum methods. By combining them with linear scaling methods like the divide & conquer (D&C) method, it is possible to quickly evaluate the e...
Saved in:
Published in: | Journal of chemical information and modeling 2019-01, Vol.59 (1), p.206-214 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-a440t-8f48fb9cf9f5847723395c586d6830941b10741dbe2786ecaf2a6cfb2903e8143 |
---|---|
cites | cdi_FETCH-LOGICAL-a440t-8f48fb9cf9f5847723395c586d6830941b10741dbe2786ecaf2a6cfb2903e8143 |
container_end_page | 214 |
container_issue | 1 |
container_start_page | 206 |
container_title | Journal of chemical information and modeling |
container_volume | 59 |
creator | Marion, Antoine Gokcan, Hatice Monard, Gerald |
description | Semi-empirical quantum methods from the neglect of differential diatomic overlap (NDDO) family such as MNDO, AM1, or PM3 are fast albeit approximate quantum methods. By combining them with linear scaling methods like the divide & conquer (D&C) method, it is possible to quickly evaluate the energy of systems containing hundreds to thousands of atoms. We here present our implementation in the Amber biomolecular package of a SEBOMD module that provides a way to run semi-empirical Born–Oppenheimer molecular dynamics. At each step of a SEBOMD, a fully converged self-consistent field (SCF) calculation is performed to obtain the semiempirical quantum potential energy of a molecular system encaged or not in periodic boundary conditions. We describe the implementation and the features of our SEBOMD implementation. We show the requirements to conserve the total energy in NVE simulations, and how to accelerate SCF convergence through density matrix extrapolation. Specific ways of handling periodic boundary conditions using mechanical embedding or electrostatic embedding through a tailored quantum Ewald summation is developed. The parallel performance of SEBOMD simulations using the D&C scheme are presented for liquid water systems of various sizes, and a comparison between the traditional full diagonalization scheme and the D&C approach for the reproduction of the structure of liquid water illustrates the potentiality of SEBOMD to simulate molecular systems containing several hundreds of atoms for hundreds of picoseconds with a quantum mechanical potential in a reasonable amount of CPU time. |
doi_str_mv | 10.1021/acs.jcim.8b00605 |
format | article |
fullrecord | <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_02188215v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2178125415</sourcerecordid><originalsourceid>FETCH-LOGICAL-a440t-8f48fb9cf9f5847723395c586d6830941b10741dbe2786ecaf2a6cfb2903e8143</originalsourceid><addsrcrecordid>eNp1kctO4zAYRi00iPt-VqNIswGJFN_jLFvoAFJRkQCJneW4ztSdOAl2A2LHO8wb8iS49LJAYmXLOt_n3z4A_ESwhyBGZ0qH3kxb1xMFhByyLbCHGM3TnMPHH-s9y_ku2A9hBiEhOcc7YJdASkiW8T2g74yz6dC11lutqmTQ-Pr97f-4bU09NdYZn9w0ldFdpXxy8VorZ3VIju-Gg_HNxUnyYudTWyfzqUn6rojwwDZuw98q_U_9NYdgu1RVMEer9QA8_Bnen1-lo_Hl9Xl_lCpK4TwVJRVlkesyL5mgWYbjtEwzwSdcEJhTVCCYUTQpDM4EN1qVWHFdFjiHxAhEyQE4WfZOVSVbb53yr7JRVl71R3JxFr9MCIzYM4rs8ZJtffPUmTCXzgZtqkrVpumCxIgwhDOCSER_f0FnTefr-JJIZQJhRhGLFFxS2jcheFNuJkBQLmTJKEsuZMmVrBj5tSruCmcmm8DaTgROl8BndH3pt30fWN2ehQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2178125415</pqid></control><display><type>article</type><title>Semi-Empirical Born–Oppenheimer Molecular Dynamics (SEBOMD) within the Amber Biomolecular Package</title><source>American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list)</source><creator>Marion, Antoine ; Gokcan, Hatice ; Monard, Gerald</creator><creatorcontrib>Marion, Antoine ; Gokcan, Hatice ; Monard, Gerald</creatorcontrib><description>Semi-empirical quantum methods from the neglect of differential diatomic overlap (NDDO) family such as MNDO, AM1, or PM3 are fast albeit approximate quantum methods. By combining them with linear scaling methods like the divide & conquer (D&C) method, it is possible to quickly evaluate the energy of systems containing hundreds to thousands of atoms. We here present our implementation in the Amber biomolecular package of a SEBOMD module that provides a way to run semi-empirical Born–Oppenheimer molecular dynamics. At each step of a SEBOMD, a fully converged self-consistent field (SCF) calculation is performed to obtain the semiempirical quantum potential energy of a molecular system encaged or not in periodic boundary conditions. We describe the implementation and the features of our SEBOMD implementation. We show the requirements to conserve the total energy in NVE simulations, and how to accelerate SCF convergence through density matrix extrapolation. Specific ways of handling periodic boundary conditions using mechanical embedding or electrostatic embedding through a tailored quantum Ewald summation is developed. The parallel performance of SEBOMD simulations using the D&C scheme are presented for liquid water systems of various sizes, and a comparison between the traditional full diagonalization scheme and the D&C approach for the reproduction of the structure of liquid water illustrates the potentiality of SEBOMD to simulate molecular systems containing several hundreds of atoms for hundreds of picoseconds with a quantum mechanical potential in a reasonable amount of CPU time.</description><identifier>ISSN: 1549-9596</identifier><identifier>EISSN: 1549-960X</identifier><identifier>DOI: 10.1021/acs.jcim.8b00605</identifier><identifier>PMID: 30433776</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Approximation ; Boundary conditions ; Chemical Sciences ; Convergence ; Embedding ; Energy conservation ; Molecular dynamics ; or physical chemistry ; Potential energy ; Quantum mechanics ; Self consistent fields ; Simulation ; Theoretical and ; Water</subject><ispartof>Journal of chemical information and modeling, 2019-01, Vol.59 (1), p.206-214</ispartof><rights>Copyright American Chemical Society Jan 28, 2019</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a440t-8f48fb9cf9f5847723395c586d6830941b10741dbe2786ecaf2a6cfb2903e8143</citedby><cites>FETCH-LOGICAL-a440t-8f48fb9cf9f5847723395c586d6830941b10741dbe2786ecaf2a6cfb2903e8143</cites><orcidid>0000-0002-3378-3481 ; 0000-0002-0112-5679 ; 0000-0002-8266-8957</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,315,783,787,888,27936,27937</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30433776$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.univ-lorraine.fr/hal-02188215$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Marion, Antoine</creatorcontrib><creatorcontrib>Gokcan, Hatice</creatorcontrib><creatorcontrib>Monard, Gerald</creatorcontrib><title>Semi-Empirical Born–Oppenheimer Molecular Dynamics (SEBOMD) within the Amber Biomolecular Package</title><title>Journal of chemical information and modeling</title><addtitle>J. Chem. Inf. Model</addtitle><description>Semi-empirical quantum methods from the neglect of differential diatomic overlap (NDDO) family such as MNDO, AM1, or PM3 are fast albeit approximate quantum methods. By combining them with linear scaling methods like the divide & conquer (D&C) method, it is possible to quickly evaluate the energy of systems containing hundreds to thousands of atoms. We here present our implementation in the Amber biomolecular package of a SEBOMD module that provides a way to run semi-empirical Born–Oppenheimer molecular dynamics. At each step of a SEBOMD, a fully converged self-consistent field (SCF) calculation is performed to obtain the semiempirical quantum potential energy of a molecular system encaged or not in periodic boundary conditions. We describe the implementation and the features of our SEBOMD implementation. We show the requirements to conserve the total energy in NVE simulations, and how to accelerate SCF convergence through density matrix extrapolation. Specific ways of handling periodic boundary conditions using mechanical embedding or electrostatic embedding through a tailored quantum Ewald summation is developed. The parallel performance of SEBOMD simulations using the D&C scheme are presented for liquid water systems of various sizes, and a comparison between the traditional full diagonalization scheme and the D&C approach for the reproduction of the structure of liquid water illustrates the potentiality of SEBOMD to simulate molecular systems containing several hundreds of atoms for hundreds of picoseconds with a quantum mechanical potential in a reasonable amount of CPU time.</description><subject>Approximation</subject><subject>Boundary conditions</subject><subject>Chemical Sciences</subject><subject>Convergence</subject><subject>Embedding</subject><subject>Energy conservation</subject><subject>Molecular dynamics</subject><subject>or physical chemistry</subject><subject>Potential energy</subject><subject>Quantum mechanics</subject><subject>Self consistent fields</subject><subject>Simulation</subject><subject>Theoretical and</subject><subject>Water</subject><issn>1549-9596</issn><issn>1549-960X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp1kctO4zAYRi00iPt-VqNIswGJFN_jLFvoAFJRkQCJneW4ztSdOAl2A2LHO8wb8iS49LJAYmXLOt_n3z4A_ESwhyBGZ0qH3kxb1xMFhByyLbCHGM3TnMPHH-s9y_ku2A9hBiEhOcc7YJdASkiW8T2g74yz6dC11lutqmTQ-Pr97f-4bU09NdYZn9w0ldFdpXxy8VorZ3VIju-Gg_HNxUnyYudTWyfzqUn6rojwwDZuw98q_U_9NYdgu1RVMEer9QA8_Bnen1-lo_Hl9Xl_lCpK4TwVJRVlkesyL5mgWYbjtEwzwSdcEJhTVCCYUTQpDM4EN1qVWHFdFjiHxAhEyQE4WfZOVSVbb53yr7JRVl71R3JxFr9MCIzYM4rs8ZJtffPUmTCXzgZtqkrVpumCxIgwhDOCSER_f0FnTefr-JJIZQJhRhGLFFxS2jcheFNuJkBQLmTJKEsuZMmVrBj5tSruCmcmm8DaTgROl8BndH3pt30fWN2ehQ</recordid><startdate>20190128</startdate><enddate>20190128</enddate><creator>Marion, Antoine</creator><creator>Gokcan, Hatice</creator><creator>Monard, Gerald</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7X8</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0002-3378-3481</orcidid><orcidid>https://orcid.org/0000-0002-0112-5679</orcidid><orcidid>https://orcid.org/0000-0002-8266-8957</orcidid></search><sort><creationdate>20190128</creationdate><title>Semi-Empirical Born–Oppenheimer Molecular Dynamics (SEBOMD) within the Amber Biomolecular Package</title><author>Marion, Antoine ; Gokcan, Hatice ; Monard, Gerald</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a440t-8f48fb9cf9f5847723395c586d6830941b10741dbe2786ecaf2a6cfb2903e8143</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Approximation</topic><topic>Boundary conditions</topic><topic>Chemical Sciences</topic><topic>Convergence</topic><topic>Embedding</topic><topic>Energy conservation</topic><topic>Molecular dynamics</topic><topic>or physical chemistry</topic><topic>Potential energy</topic><topic>Quantum mechanics</topic><topic>Self consistent fields</topic><topic>Simulation</topic><topic>Theoretical and</topic><topic>Water</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Marion, Antoine</creatorcontrib><creatorcontrib>Gokcan, Hatice</creatorcontrib><creatorcontrib>Monard, Gerald</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Journal of chemical information and modeling</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Marion, Antoine</au><au>Gokcan, Hatice</au><au>Monard, Gerald</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Semi-Empirical Born–Oppenheimer Molecular Dynamics (SEBOMD) within the Amber Biomolecular Package</atitle><jtitle>Journal of chemical information and modeling</jtitle><addtitle>J. Chem. Inf. Model</addtitle><date>2019-01-28</date><risdate>2019</risdate><volume>59</volume><issue>1</issue><spage>206</spage><epage>214</epage><pages>206-214</pages><issn>1549-9596</issn><eissn>1549-960X</eissn><abstract>Semi-empirical quantum methods from the neglect of differential diatomic overlap (NDDO) family such as MNDO, AM1, or PM3 are fast albeit approximate quantum methods. By combining them with linear scaling methods like the divide & conquer (D&C) method, it is possible to quickly evaluate the energy of systems containing hundreds to thousands of atoms. We here present our implementation in the Amber biomolecular package of a SEBOMD module that provides a way to run semi-empirical Born–Oppenheimer molecular dynamics. At each step of a SEBOMD, a fully converged self-consistent field (SCF) calculation is performed to obtain the semiempirical quantum potential energy of a molecular system encaged or not in periodic boundary conditions. We describe the implementation and the features of our SEBOMD implementation. We show the requirements to conserve the total energy in NVE simulations, and how to accelerate SCF convergence through density matrix extrapolation. Specific ways of handling periodic boundary conditions using mechanical embedding or electrostatic embedding through a tailored quantum Ewald summation is developed. The parallel performance of SEBOMD simulations using the D&C scheme are presented for liquid water systems of various sizes, and a comparison between the traditional full diagonalization scheme and the D&C approach for the reproduction of the structure of liquid water illustrates the potentiality of SEBOMD to simulate molecular systems containing several hundreds of atoms for hundreds of picoseconds with a quantum mechanical potential in a reasonable amount of CPU time.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>30433776</pmid><doi>10.1021/acs.jcim.8b00605</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-3378-3481</orcidid><orcidid>https://orcid.org/0000-0002-0112-5679</orcidid><orcidid>https://orcid.org/0000-0002-8266-8957</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1549-9596 |
ispartof | Journal of chemical information and modeling, 2019-01, Vol.59 (1), p.206-214 |
issn | 1549-9596 1549-960X |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_02188215v1 |
source | American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list) |
subjects | Approximation Boundary conditions Chemical Sciences Convergence Embedding Energy conservation Molecular dynamics or physical chemistry Potential energy Quantum mechanics Self consistent fields Simulation Theoretical and Water |
title | Semi-Empirical Born–Oppenheimer Molecular Dynamics (SEBOMD) within the Amber Biomolecular Package |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-11-13T19%3A37%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Semi-Empirical%20Born%E2%80%93Oppenheimer%20Molecular%20Dynamics%20(SEBOMD)%20within%20the%20Amber%20Biomolecular%20Package&rft.jtitle=Journal%20of%20chemical%20information%20and%20modeling&rft.au=Marion,%20Antoine&rft.date=2019-01-28&rft.volume=59&rft.issue=1&rft.spage=206&rft.epage=214&rft.pages=206-214&rft.issn=1549-9596&rft.eissn=1549-960X&rft_id=info:doi/10.1021/acs.jcim.8b00605&rft_dat=%3Cproquest_hal_p%3E2178125415%3C/proquest_hal_p%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a440t-8f48fb9cf9f5847723395c586d6830941b10741dbe2786ecaf2a6cfb2903e8143%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2178125415&rft_id=info:pmid/30433776&rfr_iscdi=true |