Loading…

Semi-Empirical Born–Oppenheimer Molecular Dynamics (SEBOMD) within the Amber Biomolecular Package

Semi-empirical quantum methods from the neglect of differential diatomic overlap (NDDO) family such as MNDO, AM1, or PM3 are fast albeit approximate quantum methods. By combining them with linear scaling methods like the divide & conquer (D&C) method, it is possible to quickly evaluate the e...

Full description

Saved in:
Bibliographic Details
Published in:Journal of chemical information and modeling 2019-01, Vol.59 (1), p.206-214
Main Authors: Marion, Antoine, Gokcan, Hatice, Monard, Gerald
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-a440t-8f48fb9cf9f5847723395c586d6830941b10741dbe2786ecaf2a6cfb2903e8143
cites cdi_FETCH-LOGICAL-a440t-8f48fb9cf9f5847723395c586d6830941b10741dbe2786ecaf2a6cfb2903e8143
container_end_page 214
container_issue 1
container_start_page 206
container_title Journal of chemical information and modeling
container_volume 59
creator Marion, Antoine
Gokcan, Hatice
Monard, Gerald
description Semi-empirical quantum methods from the neglect of differential diatomic overlap (NDDO) family such as MNDO, AM1, or PM3 are fast albeit approximate quantum methods. By combining them with linear scaling methods like the divide & conquer (D&C) method, it is possible to quickly evaluate the energy of systems containing hundreds to thousands of atoms. We here present our implementation in the Amber biomolecular package of a SEBOMD module that provides a way to run semi-empirical Born–Oppenheimer molecular dynamics. At each step of a SEBOMD, a fully converged self-consistent field (SCF) calculation is performed to obtain the semiempirical quantum potential energy of a molecular system encaged or not in periodic boundary conditions. We describe the implementation and the features of our SEBOMD implementation. We show the requirements to conserve the total energy in NVE simulations, and how to accelerate SCF convergence through density matrix extrapolation. Specific ways of handling periodic boundary conditions using mechanical embedding or electrostatic embedding through a tailored quantum Ewald summation is developed. The parallel performance of SEBOMD simulations using the D&C scheme are presented for liquid water systems of various sizes, and a comparison between the traditional full diagonalization scheme and the D&C approach for the reproduction of the structure of liquid water illustrates the potentiality of SEBOMD to simulate molecular systems containing several hundreds of atoms for hundreds of picoseconds with a quantum mechanical potential in a reasonable amount of CPU time.
doi_str_mv 10.1021/acs.jcim.8b00605
format article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_02188215v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2178125415</sourcerecordid><originalsourceid>FETCH-LOGICAL-a440t-8f48fb9cf9f5847723395c586d6830941b10741dbe2786ecaf2a6cfb2903e8143</originalsourceid><addsrcrecordid>eNp1kctO4zAYRi00iPt-VqNIswGJFN_jLFvoAFJRkQCJneW4ztSdOAl2A2LHO8wb8iS49LJAYmXLOt_n3z4A_ESwhyBGZ0qH3kxb1xMFhByyLbCHGM3TnMPHH-s9y_ku2A9hBiEhOcc7YJdASkiW8T2g74yz6dC11lutqmTQ-Pr97f-4bU09NdYZn9w0ldFdpXxy8VorZ3VIju-Gg_HNxUnyYudTWyfzqUn6rojwwDZuw98q_U_9NYdgu1RVMEer9QA8_Bnen1-lo_Hl9Xl_lCpK4TwVJRVlkesyL5mgWYbjtEwzwSdcEJhTVCCYUTQpDM4EN1qVWHFdFjiHxAhEyQE4WfZOVSVbb53yr7JRVl71R3JxFr9MCIzYM4rs8ZJtffPUmTCXzgZtqkrVpumCxIgwhDOCSER_f0FnTefr-JJIZQJhRhGLFFxS2jcheFNuJkBQLmTJKEsuZMmVrBj5tSruCmcmm8DaTgROl8BndH3pt30fWN2ehQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2178125415</pqid></control><display><type>article</type><title>Semi-Empirical Born–Oppenheimer Molecular Dynamics (SEBOMD) within the Amber Biomolecular Package</title><source>American Chemical Society:Jisc Collections:American Chemical Society Read &amp; Publish Agreement 2022-2024 (Reading list)</source><creator>Marion, Antoine ; Gokcan, Hatice ; Monard, Gerald</creator><creatorcontrib>Marion, Antoine ; Gokcan, Hatice ; Monard, Gerald</creatorcontrib><description>Semi-empirical quantum methods from the neglect of differential diatomic overlap (NDDO) family such as MNDO, AM1, or PM3 are fast albeit approximate quantum methods. By combining them with linear scaling methods like the divide &amp; conquer (D&amp;C) method, it is possible to quickly evaluate the energy of systems containing hundreds to thousands of atoms. We here present our implementation in the Amber biomolecular package of a SEBOMD module that provides a way to run semi-empirical Born–Oppenheimer molecular dynamics. At each step of a SEBOMD, a fully converged self-consistent field (SCF) calculation is performed to obtain the semiempirical quantum potential energy of a molecular system encaged or not in periodic boundary conditions. We describe the implementation and the features of our SEBOMD implementation. We show the requirements to conserve the total energy in NVE simulations, and how to accelerate SCF convergence through density matrix extrapolation. Specific ways of handling periodic boundary conditions using mechanical embedding or electrostatic embedding through a tailored quantum Ewald summation is developed. The parallel performance of SEBOMD simulations using the D&amp;C scheme are presented for liquid water systems of various sizes, and a comparison between the traditional full diagonalization scheme and the D&amp;C approach for the reproduction of the structure of liquid water illustrates the potentiality of SEBOMD to simulate molecular systems containing several hundreds of atoms for hundreds of picoseconds with a quantum mechanical potential in a reasonable amount of CPU time.</description><identifier>ISSN: 1549-9596</identifier><identifier>EISSN: 1549-960X</identifier><identifier>DOI: 10.1021/acs.jcim.8b00605</identifier><identifier>PMID: 30433776</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Approximation ; Boundary conditions ; Chemical Sciences ; Convergence ; Embedding ; Energy conservation ; Molecular dynamics ; or physical chemistry ; Potential energy ; Quantum mechanics ; Self consistent fields ; Simulation ; Theoretical and ; Water</subject><ispartof>Journal of chemical information and modeling, 2019-01, Vol.59 (1), p.206-214</ispartof><rights>Copyright American Chemical Society Jan 28, 2019</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a440t-8f48fb9cf9f5847723395c586d6830941b10741dbe2786ecaf2a6cfb2903e8143</citedby><cites>FETCH-LOGICAL-a440t-8f48fb9cf9f5847723395c586d6830941b10741dbe2786ecaf2a6cfb2903e8143</cites><orcidid>0000-0002-3378-3481 ; 0000-0002-0112-5679 ; 0000-0002-8266-8957</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,315,783,787,888,27936,27937</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30433776$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.univ-lorraine.fr/hal-02188215$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Marion, Antoine</creatorcontrib><creatorcontrib>Gokcan, Hatice</creatorcontrib><creatorcontrib>Monard, Gerald</creatorcontrib><title>Semi-Empirical Born–Oppenheimer Molecular Dynamics (SEBOMD) within the Amber Biomolecular Package</title><title>Journal of chemical information and modeling</title><addtitle>J. Chem. Inf. Model</addtitle><description>Semi-empirical quantum methods from the neglect of differential diatomic overlap (NDDO) family such as MNDO, AM1, or PM3 are fast albeit approximate quantum methods. By combining them with linear scaling methods like the divide &amp; conquer (D&amp;C) method, it is possible to quickly evaluate the energy of systems containing hundreds to thousands of atoms. We here present our implementation in the Amber biomolecular package of a SEBOMD module that provides a way to run semi-empirical Born–Oppenheimer molecular dynamics. At each step of a SEBOMD, a fully converged self-consistent field (SCF) calculation is performed to obtain the semiempirical quantum potential energy of a molecular system encaged or not in periodic boundary conditions. We describe the implementation and the features of our SEBOMD implementation. We show the requirements to conserve the total energy in NVE simulations, and how to accelerate SCF convergence through density matrix extrapolation. Specific ways of handling periodic boundary conditions using mechanical embedding or electrostatic embedding through a tailored quantum Ewald summation is developed. The parallel performance of SEBOMD simulations using the D&amp;C scheme are presented for liquid water systems of various sizes, and a comparison between the traditional full diagonalization scheme and the D&amp;C approach for the reproduction of the structure of liquid water illustrates the potentiality of SEBOMD to simulate molecular systems containing several hundreds of atoms for hundreds of picoseconds with a quantum mechanical potential in a reasonable amount of CPU time.</description><subject>Approximation</subject><subject>Boundary conditions</subject><subject>Chemical Sciences</subject><subject>Convergence</subject><subject>Embedding</subject><subject>Energy conservation</subject><subject>Molecular dynamics</subject><subject>or physical chemistry</subject><subject>Potential energy</subject><subject>Quantum mechanics</subject><subject>Self consistent fields</subject><subject>Simulation</subject><subject>Theoretical and</subject><subject>Water</subject><issn>1549-9596</issn><issn>1549-960X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp1kctO4zAYRi00iPt-VqNIswGJFN_jLFvoAFJRkQCJneW4ztSdOAl2A2LHO8wb8iS49LJAYmXLOt_n3z4A_ESwhyBGZ0qH3kxb1xMFhByyLbCHGM3TnMPHH-s9y_ku2A9hBiEhOcc7YJdASkiW8T2g74yz6dC11lutqmTQ-Pr97f-4bU09NdYZn9w0ldFdpXxy8VorZ3VIju-Gg_HNxUnyYudTWyfzqUn6rojwwDZuw98q_U_9NYdgu1RVMEer9QA8_Bnen1-lo_Hl9Xl_lCpK4TwVJRVlkesyL5mgWYbjtEwzwSdcEJhTVCCYUTQpDM4EN1qVWHFdFjiHxAhEyQE4WfZOVSVbb53yr7JRVl71R3JxFr9MCIzYM4rs8ZJtffPUmTCXzgZtqkrVpumCxIgwhDOCSER_f0FnTefr-JJIZQJhRhGLFFxS2jcheFNuJkBQLmTJKEsuZMmVrBj5tSruCmcmm8DaTgROl8BndH3pt30fWN2ehQ</recordid><startdate>20190128</startdate><enddate>20190128</enddate><creator>Marion, Antoine</creator><creator>Gokcan, Hatice</creator><creator>Monard, Gerald</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7X8</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0002-3378-3481</orcidid><orcidid>https://orcid.org/0000-0002-0112-5679</orcidid><orcidid>https://orcid.org/0000-0002-8266-8957</orcidid></search><sort><creationdate>20190128</creationdate><title>Semi-Empirical Born–Oppenheimer Molecular Dynamics (SEBOMD) within the Amber Biomolecular Package</title><author>Marion, Antoine ; Gokcan, Hatice ; Monard, Gerald</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a440t-8f48fb9cf9f5847723395c586d6830941b10741dbe2786ecaf2a6cfb2903e8143</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Approximation</topic><topic>Boundary conditions</topic><topic>Chemical Sciences</topic><topic>Convergence</topic><topic>Embedding</topic><topic>Energy conservation</topic><topic>Molecular dynamics</topic><topic>or physical chemistry</topic><topic>Potential energy</topic><topic>Quantum mechanics</topic><topic>Self consistent fields</topic><topic>Simulation</topic><topic>Theoretical and</topic><topic>Water</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Marion, Antoine</creatorcontrib><creatorcontrib>Gokcan, Hatice</creatorcontrib><creatorcontrib>Monard, Gerald</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Journal of chemical information and modeling</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Marion, Antoine</au><au>Gokcan, Hatice</au><au>Monard, Gerald</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Semi-Empirical Born–Oppenheimer Molecular Dynamics (SEBOMD) within the Amber Biomolecular Package</atitle><jtitle>Journal of chemical information and modeling</jtitle><addtitle>J. Chem. Inf. Model</addtitle><date>2019-01-28</date><risdate>2019</risdate><volume>59</volume><issue>1</issue><spage>206</spage><epage>214</epage><pages>206-214</pages><issn>1549-9596</issn><eissn>1549-960X</eissn><abstract>Semi-empirical quantum methods from the neglect of differential diatomic overlap (NDDO) family such as MNDO, AM1, or PM3 are fast albeit approximate quantum methods. By combining them with linear scaling methods like the divide &amp; conquer (D&amp;C) method, it is possible to quickly evaluate the energy of systems containing hundreds to thousands of atoms. We here present our implementation in the Amber biomolecular package of a SEBOMD module that provides a way to run semi-empirical Born–Oppenheimer molecular dynamics. At each step of a SEBOMD, a fully converged self-consistent field (SCF) calculation is performed to obtain the semiempirical quantum potential energy of a molecular system encaged or not in periodic boundary conditions. We describe the implementation and the features of our SEBOMD implementation. We show the requirements to conserve the total energy in NVE simulations, and how to accelerate SCF convergence through density matrix extrapolation. Specific ways of handling periodic boundary conditions using mechanical embedding or electrostatic embedding through a tailored quantum Ewald summation is developed. The parallel performance of SEBOMD simulations using the D&amp;C scheme are presented for liquid water systems of various sizes, and a comparison between the traditional full diagonalization scheme and the D&amp;C approach for the reproduction of the structure of liquid water illustrates the potentiality of SEBOMD to simulate molecular systems containing several hundreds of atoms for hundreds of picoseconds with a quantum mechanical potential in a reasonable amount of CPU time.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>30433776</pmid><doi>10.1021/acs.jcim.8b00605</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-3378-3481</orcidid><orcidid>https://orcid.org/0000-0002-0112-5679</orcidid><orcidid>https://orcid.org/0000-0002-8266-8957</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1549-9596
ispartof Journal of chemical information and modeling, 2019-01, Vol.59 (1), p.206-214
issn 1549-9596
1549-960X
language eng
recordid cdi_hal_primary_oai_HAL_hal_02188215v1
source American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list)
subjects Approximation
Boundary conditions
Chemical Sciences
Convergence
Embedding
Energy conservation
Molecular dynamics
or physical chemistry
Potential energy
Quantum mechanics
Self consistent fields
Simulation
Theoretical and
Water
title Semi-Empirical Born–Oppenheimer Molecular Dynamics (SEBOMD) within the Amber Biomolecular Package
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-11-13T19%3A37%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Semi-Empirical%20Born%E2%80%93Oppenheimer%20Molecular%20Dynamics%20(SEBOMD)%20within%20the%20Amber%20Biomolecular%20Package&rft.jtitle=Journal%20of%20chemical%20information%20and%20modeling&rft.au=Marion,%20Antoine&rft.date=2019-01-28&rft.volume=59&rft.issue=1&rft.spage=206&rft.epage=214&rft.pages=206-214&rft.issn=1549-9596&rft.eissn=1549-960X&rft_id=info:doi/10.1021/acs.jcim.8b00605&rft_dat=%3Cproquest_hal_p%3E2178125415%3C/proquest_hal_p%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a440t-8f48fb9cf9f5847723395c586d6830941b10741dbe2786ecaf2a6cfb2903e8143%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2178125415&rft_id=info:pmid/30433776&rfr_iscdi=true