Loading…

A preconditioner for generalized saddle point problems: Application to 3D stationary Navier-Stokes equations

In this article we consider the stationary Navier‐Stokes system discretized by finite element methods which do not satisfy the inf‐sup condition. These discretizations typically take the form of a variational problem with stabilization terms. Such a problem may be transformed by iteration methods in...

Full description

Saved in:
Bibliographic Details
Published in:Numerical methods for partial differential equations 2006-11, Vol.22 (6), p.1289-1313
Main Authors: Calgaro, C., Deuring, P., Jennequin, D.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c3414-9f52678fcbe271f3db47aa036bfb9b2816b0178be801d0ae03293206e56a04f43
cites cdi_FETCH-LOGICAL-c3414-9f52678fcbe271f3db47aa036bfb9b2816b0178be801d0ae03293206e56a04f43
container_end_page 1313
container_issue 6
container_start_page 1289
container_title Numerical methods for partial differential equations
container_volume 22
creator Calgaro, C.
Deuring, P.
Jennequin, D.
description In this article we consider the stationary Navier‐Stokes system discretized by finite element methods which do not satisfy the inf‐sup condition. These discretizations typically take the form of a variational problem with stabilization terms. Such a problem may be transformed by iteration methods into a sequence of linear, Oseen‐type variational problems. On the algebraic level, these problems belong to a certain class of linear systems with nonsymmetric system matrices (“generalized saddle point problems”). We show that if the underlying finite element spaces satisfy a generalized inf‐sup condition, these problems have a unique solution. Moreover, we introduce a block triangular preconditioner and we show how the eigenvalue bounds of the preconditioned system matrix depend on the coercivity constant and continuity bounds of the bilinear forms arising in the variational problem. Finally we prove that the stabilized P1‐P1 finite element method proposed by Rebollo is covered by our theory and we show that the condition number of the preconditioned system matrix is independent of the mesh size. Numerical tests with 3D stationary Navier‐Stokes flows confirm our results. © 2006 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 2006
doi_str_mv 10.1002/num.20154
format article
fullrecord <record><control><sourceid>istex_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_00768482v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>ark_67375_WNG_SBQTDV5X_W</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3414-9f52678fcbe271f3db47aa036bfb9b2816b0178be801d0ae03293206e56a04f43</originalsourceid><addsrcrecordid>eNp1kMlOwzAQhi0EEqVw4A185RA6XrJxKy1QpFKEWG-Wk0zANK2DHdanJ22hnDjNjP19o9FPyD6DQwbAe_PX2SEHFsoN0mGQJgGXPNokHYhlGrAwfdgmO94_AzAWsrRDqj6tHeZ2XpjG2Dk6WlpHH7HtdGW-sKBeF0WFtLZm3rSszSqc-SPar-vK5Hoh0cZSMaS-WU7afdKJfjPoguvGTtFTfHld_vhdslXqyuPeT-2S29OTm8EoGF-enQ_64yAXkskgLUMexUmZZ8hjVooik7HWIKKszNKMJyzKgMVJhgmwAjSC4KngEGEYaZClFF1ysNr7pCtVOzNrb1JWGzXqj9XiDSCOEpnwN_bH5s5677BcCwzUIlLVRqqWkbZsb8W-mwo__wfV5Pbi1whWhvENfqwN7aYqikUcqvvJmbo-vroZ3oUP6l58A4l2iG8</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>A preconditioner for generalized saddle point problems: Application to 3D stationary Navier-Stokes equations</title><source>Wiley-Blackwell Journals</source><creator>Calgaro, C. ; Deuring, P. ; Jennequin, D.</creator><creatorcontrib>Calgaro, C. ; Deuring, P. ; Jennequin, D.</creatorcontrib><description>In this article we consider the stationary Navier‐Stokes system discretized by finite element methods which do not satisfy the inf‐sup condition. These discretizations typically take the form of a variational problem with stabilization terms. Such a problem may be transformed by iteration methods into a sequence of linear, Oseen‐type variational problems. On the algebraic level, these problems belong to a certain class of linear systems with nonsymmetric system matrices (“generalized saddle point problems”). We show that if the underlying finite element spaces satisfy a generalized inf‐sup condition, these problems have a unique solution. Moreover, we introduce a block triangular preconditioner and we show how the eigenvalue bounds of the preconditioned system matrix depend on the coercivity constant and continuity bounds of the bilinear forms arising in the variational problem. Finally we prove that the stabilized P1‐P1 finite element method proposed by Rebollo is covered by our theory and we show that the condition number of the preconditioned system matrix is independent of the mesh size. Numerical tests with 3D stationary Navier‐Stokes flows confirm our results. © 2006 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 2006</description><identifier>ISSN: 0749-159X</identifier><identifier>EISSN: 1098-2426</identifier><identifier>DOI: 10.1002/num.20154</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc., A Wiley Company</publisher><subject>iterative solvers ; Mathematics ; Numerical Analysis ; preconditioning ; saddle point problems ; stabilization ; stationary Navier-Stokes equations</subject><ispartof>Numerical methods for partial differential equations, 2006-11, Vol.22 (6), p.1289-1313</ispartof><rights>Copyright © 2006 Wiley Periodicals, Inc.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3414-9f52678fcbe271f3db47aa036bfb9b2816b0178be801d0ae03293206e56a04f43</citedby><cites>FETCH-LOGICAL-c3414-9f52678fcbe271f3db47aa036bfb9b2816b0178be801d0ae03293206e56a04f43</cites><orcidid>0000-0003-0470-2387</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fnum.20154$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fnum.20154$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>230,315,786,790,891,27957,27958,50923,51032</link.rule.ids><backlink>$$Uhttps://hal.science/hal-00768482$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Calgaro, C.</creatorcontrib><creatorcontrib>Deuring, P.</creatorcontrib><creatorcontrib>Jennequin, D.</creatorcontrib><title>A preconditioner for generalized saddle point problems: Application to 3D stationary Navier-Stokes equations</title><title>Numerical methods for partial differential equations</title><addtitle>Numer. Methods Partial Differential Eq</addtitle><description>In this article we consider the stationary Navier‐Stokes system discretized by finite element methods which do not satisfy the inf‐sup condition. These discretizations typically take the form of a variational problem with stabilization terms. Such a problem may be transformed by iteration methods into a sequence of linear, Oseen‐type variational problems. On the algebraic level, these problems belong to a certain class of linear systems with nonsymmetric system matrices (“generalized saddle point problems”). We show that if the underlying finite element spaces satisfy a generalized inf‐sup condition, these problems have a unique solution. Moreover, we introduce a block triangular preconditioner and we show how the eigenvalue bounds of the preconditioned system matrix depend on the coercivity constant and continuity bounds of the bilinear forms arising in the variational problem. Finally we prove that the stabilized P1‐P1 finite element method proposed by Rebollo is covered by our theory and we show that the condition number of the preconditioned system matrix is independent of the mesh size. Numerical tests with 3D stationary Navier‐Stokes flows confirm our results. © 2006 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 2006</description><subject>iterative solvers</subject><subject>Mathematics</subject><subject>Numerical Analysis</subject><subject>preconditioning</subject><subject>saddle point problems</subject><subject>stabilization</subject><subject>stationary Navier-Stokes equations</subject><issn>0749-159X</issn><issn>1098-2426</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><recordid>eNp1kMlOwzAQhi0EEqVw4A185RA6XrJxKy1QpFKEWG-Wk0zANK2DHdanJ22hnDjNjP19o9FPyD6DQwbAe_PX2SEHFsoN0mGQJgGXPNokHYhlGrAwfdgmO94_AzAWsrRDqj6tHeZ2XpjG2Dk6WlpHH7HtdGW-sKBeF0WFtLZm3rSszSqc-SPar-vK5Hoh0cZSMaS-WU7afdKJfjPoguvGTtFTfHld_vhdslXqyuPeT-2S29OTm8EoGF-enQ_64yAXkskgLUMexUmZZ8hjVooik7HWIKKszNKMJyzKgMVJhgmwAjSC4KngEGEYaZClFF1ysNr7pCtVOzNrb1JWGzXqj9XiDSCOEpnwN_bH5s5677BcCwzUIlLVRqqWkbZsb8W-mwo__wfV5Pbi1whWhvENfqwN7aYqikUcqvvJmbo-vroZ3oUP6l58A4l2iG8</recordid><startdate>200611</startdate><enddate>200611</enddate><creator>Calgaro, C.</creator><creator>Deuring, P.</creator><creator>Jennequin, D.</creator><general>Wiley Subscription Services, Inc., A Wiley Company</general><general>Wiley</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0003-0470-2387</orcidid></search><sort><creationdate>200611</creationdate><title>A preconditioner for generalized saddle point problems: Application to 3D stationary Navier-Stokes equations</title><author>Calgaro, C. ; Deuring, P. ; Jennequin, D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3414-9f52678fcbe271f3db47aa036bfb9b2816b0178be801d0ae03293206e56a04f43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>iterative solvers</topic><topic>Mathematics</topic><topic>Numerical Analysis</topic><topic>preconditioning</topic><topic>saddle point problems</topic><topic>stabilization</topic><topic>stationary Navier-Stokes equations</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Calgaro, C.</creatorcontrib><creatorcontrib>Deuring, P.</creatorcontrib><creatorcontrib>Jennequin, D.</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Numerical methods for partial differential equations</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Calgaro, C.</au><au>Deuring, P.</au><au>Jennequin, D.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A preconditioner for generalized saddle point problems: Application to 3D stationary Navier-Stokes equations</atitle><jtitle>Numerical methods for partial differential equations</jtitle><addtitle>Numer. Methods Partial Differential Eq</addtitle><date>2006-11</date><risdate>2006</risdate><volume>22</volume><issue>6</issue><spage>1289</spage><epage>1313</epage><pages>1289-1313</pages><issn>0749-159X</issn><eissn>1098-2426</eissn><notes>istex:03FE7B3E22BCA2F96992DB9E39350543877FDDDE</notes><notes>ark:/67375/WNG-SBQTDV5X-W</notes><notes>ArticleID:NUM20154</notes><notes>AMS subject classifications - No. 35Q30; No. 35J65; No. 65F10; No. 65N22; No. 65N25; No. 65N30</notes><abstract>In this article we consider the stationary Navier‐Stokes system discretized by finite element methods which do not satisfy the inf‐sup condition. These discretizations typically take the form of a variational problem with stabilization terms. Such a problem may be transformed by iteration methods into a sequence of linear, Oseen‐type variational problems. On the algebraic level, these problems belong to a certain class of linear systems with nonsymmetric system matrices (“generalized saddle point problems”). We show that if the underlying finite element spaces satisfy a generalized inf‐sup condition, these problems have a unique solution. Moreover, we introduce a block triangular preconditioner and we show how the eigenvalue bounds of the preconditioned system matrix depend on the coercivity constant and continuity bounds of the bilinear forms arising in the variational problem. Finally we prove that the stabilized P1‐P1 finite element method proposed by Rebollo is covered by our theory and we show that the condition number of the preconditioned system matrix is independent of the mesh size. Numerical tests with 3D stationary Navier‐Stokes flows confirm our results. © 2006 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 2006</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc., A Wiley Company</pub><doi>10.1002/num.20154</doi><tpages>25</tpages><orcidid>https://orcid.org/0000-0003-0470-2387</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0749-159X
ispartof Numerical methods for partial differential equations, 2006-11, Vol.22 (6), p.1289-1313
issn 0749-159X
1098-2426
language eng
recordid cdi_hal_primary_oai_HAL_hal_00768482v1
source Wiley-Blackwell Journals
subjects iterative solvers
Mathematics
Numerical Analysis
preconditioning
saddle point problems
stabilization
stationary Navier-Stokes equations
title A preconditioner for generalized saddle point problems: Application to 3D stationary Navier-Stokes equations
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-09-21T23%3A38%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-istex_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20preconditioner%20for%20generalized%20saddle%20point%20problems:%20Application%20to%203D%20stationary%20Navier-Stokes%20equations&rft.jtitle=Numerical%20methods%20for%20partial%20differential%20equations&rft.au=Calgaro,%20C.&rft.date=2006-11&rft.volume=22&rft.issue=6&rft.spage=1289&rft.epage=1313&rft.pages=1289-1313&rft.issn=0749-159X&rft.eissn=1098-2426&rft_id=info:doi/10.1002/num.20154&rft_dat=%3Cistex_hal_p%3Eark_67375_WNG_SBQTDV5X_W%3C/istex_hal_p%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c3414-9f52678fcbe271f3db47aa036bfb9b2816b0178be801d0ae03293206e56a04f43%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true