Loading…

Genetic Control of Kinetochore-Driven Microtubule Growth in IDrosophila/I Mitosis

Centrosome-containing cells assemble their spindles exploiting three main classes of microtubules (MTs): MTs nucleated by the centrosomes, MTs generated near the chromosomes/kinetochores, and MTs nucleated within the spindle by the augmin-dependent pathway. Mammalian and Drosophila cells lacking the...

Full description

Saved in:
Bibliographic Details
Published in:Cells (Basel, Switzerland) Switzerland), 2022-07, Vol.11 (14)
Main Authors: Popova, Julia V, Pavlova, Gera A, Razuvaeva, Alyona V, Yarinich, Lyubov A, Andreyeva, Evgeniya N, Anders, Alina F, Galimova, Yuliya A, Renda, Fioranna, Somma, Maria Patrizia, Pindyurin, Alexey V, Gatti, Maurizio
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page
container_issue 14
container_start_page
container_title Cells (Basel, Switzerland)
container_volume 11
creator Popova, Julia V
Pavlova, Gera A
Razuvaeva, Alyona V
Yarinich, Lyubov A
Andreyeva, Evgeniya N
Anders, Alina F
Galimova, Yuliya A
Renda, Fioranna
Somma, Maria Patrizia
Pindyurin, Alexey V
Gatti, Maurizio
description Centrosome-containing cells assemble their spindles exploiting three main classes of microtubules (MTs): MTs nucleated by the centrosomes, MTs generated near the chromosomes/kinetochores, and MTs nucleated within the spindle by the augmin-dependent pathway. Mammalian and Drosophila cells lacking the centrosomes generate MTs at kinetochores and eventually form functional bipolar spindles. However, the mechanisms underlying kinetochore-driven MT formation are poorly understood. One of the ways to elucidate these mechanisms is the analysis of spindle reassembly following MT depolymerization. Here, we used an RNA interference (RNAi)-based reverse genetics approach to dissect the process of kinetochore-driven MT regrowth (KDMTR) after colcemid-induced MT depolymerization. This MT depolymerization procedure allows a clear assessment of KDMTR, as colcemid disrupts centrosome-driven MT regrowth but not KDMTR. We examined KDMTR in normal Drosophila S2 cells and in S2 cells subjected to RNAi against conserved genes involved in mitotic spindle assembly: mast/orbit/chb (CLASP1), mei-38 (TPX2), mars (HURP), dgt6 (HAUS6), Eb1 (MAPRE1/EB1), Patronin (CAMSAP2), asp (ASPM), and Klp10A (KIF2A). RNAi-mediated depletion of Mast/Orbit, Mei-38, Mars, Dgt6, and Eb1 caused a significant delay in KDMTR, while loss of Patronin had a milder negative effect on this process. In contrast, Asp or Klp10A deficiency increased the rate of KDMTR. These results coupled with the analysis of GFP-tagged proteins (Mast/Orbit, Mei-38, Mars, Eb1, Patronin, and Asp) localization during KDMTR suggested a model for kinetochore-dependent spindle reassembly. We propose that kinetochores capture the plus ends of MTs nucleated in their vicinity and that these MTs elongate at kinetochores through the action of Mast/Orbit. The Asp protein binds the MT minus ends since the beginning of KDMTR, preventing excessive and disorganized MT regrowth. Mei-38, Mars, Dgt6, Eb1, and Patronin positively regulate polymerization, bundling, and stabilization of regrowing MTs until a bipolar spindle is reformed.
doi_str_mv 10.3390/cells11142127
format article
fullrecord <record><control><sourceid>gale</sourceid><recordid>TN_cdi_gale_infotracmisc_A723061089</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A723061089</galeid><sourcerecordid>A723061089</sourcerecordid><originalsourceid>FETCH-LOGICAL-g679-84c511da1beaa2bd5d4ce3d991e7868ccdbfe0a3ca4341bf2b374c417d9a6c7d3</originalsourceid><addsrcrecordid>eNptj0FLAzEQhYMoWGqP3gOet0022c3mWFqtxYoIvZfsZLYbSTeSbPXvG9BDD745zOPxzcAj5J6zuRCaLQC9T5xzWfJSXZFJyZQopGT6-sLfkllKHyyr4TVn1YS8b3DA0QFdhWGMwdPQ0ReXowB9iFiso_vCgb46iGE8t2ePdBPD99hTN9DtOoYUPnvnzWKbmTEkl-7ITWd8wtnfnpL90-N-9Vzs3jbb1XJXHGuli0ZCxbk1vEVjytZWVgIKqzVH1dQNgG07ZEaAkULytitboSRIrqw2NSgrpuTh9-3ReDy4oQtjNHByCQ5LVQqW6zU6U_N_qDwWTw7CgJ3L-cXBDzbtYoU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Genetic Control of Kinetochore-Driven Microtubule Growth in IDrosophila/I Mitosis</title><source>Publicly Available Content Database</source><source>PubMed Central</source><creator>Popova, Julia V ; Pavlova, Gera A ; Razuvaeva, Alyona V ; Yarinich, Lyubov A ; Andreyeva, Evgeniya N ; Anders, Alina F ; Galimova, Yuliya A ; Renda, Fioranna ; Somma, Maria Patrizia ; Pindyurin, Alexey V ; Gatti, Maurizio</creator><creatorcontrib>Popova, Julia V ; Pavlova, Gera A ; Razuvaeva, Alyona V ; Yarinich, Lyubov A ; Andreyeva, Evgeniya N ; Anders, Alina F ; Galimova, Yuliya A ; Renda, Fioranna ; Somma, Maria Patrizia ; Pindyurin, Alexey V ; Gatti, Maurizio</creatorcontrib><description>Centrosome-containing cells assemble their spindles exploiting three main classes of microtubules (MTs): MTs nucleated by the centrosomes, MTs generated near the chromosomes/kinetochores, and MTs nucleated within the spindle by the augmin-dependent pathway. Mammalian and Drosophila cells lacking the centrosomes generate MTs at kinetochores and eventually form functional bipolar spindles. However, the mechanisms underlying kinetochore-driven MT formation are poorly understood. One of the ways to elucidate these mechanisms is the analysis of spindle reassembly following MT depolymerization. Here, we used an RNA interference (RNAi)-based reverse genetics approach to dissect the process of kinetochore-driven MT regrowth (KDMTR) after colcemid-induced MT depolymerization. This MT depolymerization procedure allows a clear assessment of KDMTR, as colcemid disrupts centrosome-driven MT regrowth but not KDMTR. We examined KDMTR in normal Drosophila S2 cells and in S2 cells subjected to RNAi against conserved genes involved in mitotic spindle assembly: mast/orbit/chb (CLASP1), mei-38 (TPX2), mars (HURP), dgt6 (HAUS6), Eb1 (MAPRE1/EB1), Patronin (CAMSAP2), asp (ASPM), and Klp10A (KIF2A). RNAi-mediated depletion of Mast/Orbit, Mei-38, Mars, Dgt6, and Eb1 caused a significant delay in KDMTR, while loss of Patronin had a milder negative effect on this process. In contrast, Asp or Klp10A deficiency increased the rate of KDMTR. These results coupled with the analysis of GFP-tagged proteins (Mast/Orbit, Mei-38, Mars, Eb1, Patronin, and Asp) localization during KDMTR suggested a model for kinetochore-dependent spindle reassembly. We propose that kinetochores capture the plus ends of MTs nucleated in their vicinity and that these MTs elongate at kinetochores through the action of Mast/Orbit. The Asp protein binds the MT minus ends since the beginning of KDMTR, preventing excessive and disorganized MT regrowth. Mei-38, Mars, Dgt6, Eb1, and Patronin positively regulate polymerization, bundling, and stabilization of regrowing MTs until a bipolar spindle is reformed.</description><identifier>ISSN: 2073-4409</identifier><identifier>EISSN: 2073-4409</identifier><identifier>DOI: 10.3390/cells11142127</identifier><language>eng</language><publisher>MDPI AG</publisher><subject>Analysis ; Control ; Drosophila ; Genetic aspects ; Identification and classification ; Kinetochores ; Methods ; Microtubules ; Polymerization ; Structure</subject><ispartof>Cells (Basel, Switzerland), 2022-07, Vol.11 (14)</ispartof><rights>COPYRIGHT 2022 MDPI AG</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>315,786,790,27957,27958</link.rule.ids></links><search><creatorcontrib>Popova, Julia V</creatorcontrib><creatorcontrib>Pavlova, Gera A</creatorcontrib><creatorcontrib>Razuvaeva, Alyona V</creatorcontrib><creatorcontrib>Yarinich, Lyubov A</creatorcontrib><creatorcontrib>Andreyeva, Evgeniya N</creatorcontrib><creatorcontrib>Anders, Alina F</creatorcontrib><creatorcontrib>Galimova, Yuliya A</creatorcontrib><creatorcontrib>Renda, Fioranna</creatorcontrib><creatorcontrib>Somma, Maria Patrizia</creatorcontrib><creatorcontrib>Pindyurin, Alexey V</creatorcontrib><creatorcontrib>Gatti, Maurizio</creatorcontrib><title>Genetic Control of Kinetochore-Driven Microtubule Growth in IDrosophila/I Mitosis</title><title>Cells (Basel, Switzerland)</title><description>Centrosome-containing cells assemble their spindles exploiting three main classes of microtubules (MTs): MTs nucleated by the centrosomes, MTs generated near the chromosomes/kinetochores, and MTs nucleated within the spindle by the augmin-dependent pathway. Mammalian and Drosophila cells lacking the centrosomes generate MTs at kinetochores and eventually form functional bipolar spindles. However, the mechanisms underlying kinetochore-driven MT formation are poorly understood. One of the ways to elucidate these mechanisms is the analysis of spindle reassembly following MT depolymerization. Here, we used an RNA interference (RNAi)-based reverse genetics approach to dissect the process of kinetochore-driven MT regrowth (KDMTR) after colcemid-induced MT depolymerization. This MT depolymerization procedure allows a clear assessment of KDMTR, as colcemid disrupts centrosome-driven MT regrowth but not KDMTR. We examined KDMTR in normal Drosophila S2 cells and in S2 cells subjected to RNAi against conserved genes involved in mitotic spindle assembly: mast/orbit/chb (CLASP1), mei-38 (TPX2), mars (HURP), dgt6 (HAUS6), Eb1 (MAPRE1/EB1), Patronin (CAMSAP2), asp (ASPM), and Klp10A (KIF2A). RNAi-mediated depletion of Mast/Orbit, Mei-38, Mars, Dgt6, and Eb1 caused a significant delay in KDMTR, while loss of Patronin had a milder negative effect on this process. In contrast, Asp or Klp10A deficiency increased the rate of KDMTR. These results coupled with the analysis of GFP-tagged proteins (Mast/Orbit, Mei-38, Mars, Eb1, Patronin, and Asp) localization during KDMTR suggested a model for kinetochore-dependent spindle reassembly. We propose that kinetochores capture the plus ends of MTs nucleated in their vicinity and that these MTs elongate at kinetochores through the action of Mast/Orbit. The Asp protein binds the MT minus ends since the beginning of KDMTR, preventing excessive and disorganized MT regrowth. Mei-38, Mars, Dgt6, Eb1, and Patronin positively regulate polymerization, bundling, and stabilization of regrowing MTs until a bipolar spindle is reformed.</description><subject>Analysis</subject><subject>Control</subject><subject>Drosophila</subject><subject>Genetic aspects</subject><subject>Identification and classification</subject><subject>Kinetochores</subject><subject>Methods</subject><subject>Microtubules</subject><subject>Polymerization</subject><subject>Structure</subject><issn>2073-4409</issn><issn>2073-4409</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid/><recordid>eNptj0FLAzEQhYMoWGqP3gOet0022c3mWFqtxYoIvZfsZLYbSTeSbPXvG9BDD745zOPxzcAj5J6zuRCaLQC9T5xzWfJSXZFJyZQopGT6-sLfkllKHyyr4TVn1YS8b3DA0QFdhWGMwdPQ0ReXowB9iFiso_vCgb46iGE8t2ePdBPD99hTN9DtOoYUPnvnzWKbmTEkl-7ITWd8wtnfnpL90-N-9Vzs3jbb1XJXHGuli0ZCxbk1vEVjytZWVgIKqzVH1dQNgG07ZEaAkULytitboSRIrqw2NSgrpuTh9-3ReDy4oQtjNHByCQ5LVQqW6zU6U_N_qDwWTw7CgJ3L-cXBDzbtYoU</recordid><startdate>20220706</startdate><enddate>20220706</enddate><creator>Popova, Julia V</creator><creator>Pavlova, Gera A</creator><creator>Razuvaeva, Alyona V</creator><creator>Yarinich, Lyubov A</creator><creator>Andreyeva, Evgeniya N</creator><creator>Anders, Alina F</creator><creator>Galimova, Yuliya A</creator><creator>Renda, Fioranna</creator><creator>Somma, Maria Patrizia</creator><creator>Pindyurin, Alexey V</creator><creator>Gatti, Maurizio</creator><general>MDPI AG</general><scope/></search><sort><creationdate>20220706</creationdate><title>Genetic Control of Kinetochore-Driven Microtubule Growth in IDrosophila/I Mitosis</title><author>Popova, Julia V ; Pavlova, Gera A ; Razuvaeva, Alyona V ; Yarinich, Lyubov A ; Andreyeva, Evgeniya N ; Anders, Alina F ; Galimova, Yuliya A ; Renda, Fioranna ; Somma, Maria Patrizia ; Pindyurin, Alexey V ; Gatti, Maurizio</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-g679-84c511da1beaa2bd5d4ce3d991e7868ccdbfe0a3ca4341bf2b374c417d9a6c7d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Analysis</topic><topic>Control</topic><topic>Drosophila</topic><topic>Genetic aspects</topic><topic>Identification and classification</topic><topic>Kinetochores</topic><topic>Methods</topic><topic>Microtubules</topic><topic>Polymerization</topic><topic>Structure</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Popova, Julia V</creatorcontrib><creatorcontrib>Pavlova, Gera A</creatorcontrib><creatorcontrib>Razuvaeva, Alyona V</creatorcontrib><creatorcontrib>Yarinich, Lyubov A</creatorcontrib><creatorcontrib>Andreyeva, Evgeniya N</creatorcontrib><creatorcontrib>Anders, Alina F</creatorcontrib><creatorcontrib>Galimova, Yuliya A</creatorcontrib><creatorcontrib>Renda, Fioranna</creatorcontrib><creatorcontrib>Somma, Maria Patrizia</creatorcontrib><creatorcontrib>Pindyurin, Alexey V</creatorcontrib><creatorcontrib>Gatti, Maurizio</creatorcontrib><jtitle>Cells (Basel, Switzerland)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Popova, Julia V</au><au>Pavlova, Gera A</au><au>Razuvaeva, Alyona V</au><au>Yarinich, Lyubov A</au><au>Andreyeva, Evgeniya N</au><au>Anders, Alina F</au><au>Galimova, Yuliya A</au><au>Renda, Fioranna</au><au>Somma, Maria Patrizia</au><au>Pindyurin, Alexey V</au><au>Gatti, Maurizio</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Genetic Control of Kinetochore-Driven Microtubule Growth in IDrosophila/I Mitosis</atitle><jtitle>Cells (Basel, Switzerland)</jtitle><date>2022-07-06</date><risdate>2022</risdate><volume>11</volume><issue>14</issue><issn>2073-4409</issn><eissn>2073-4409</eissn><abstract>Centrosome-containing cells assemble their spindles exploiting three main classes of microtubules (MTs): MTs nucleated by the centrosomes, MTs generated near the chromosomes/kinetochores, and MTs nucleated within the spindle by the augmin-dependent pathway. Mammalian and Drosophila cells lacking the centrosomes generate MTs at kinetochores and eventually form functional bipolar spindles. However, the mechanisms underlying kinetochore-driven MT formation are poorly understood. One of the ways to elucidate these mechanisms is the analysis of spindle reassembly following MT depolymerization. Here, we used an RNA interference (RNAi)-based reverse genetics approach to dissect the process of kinetochore-driven MT regrowth (KDMTR) after colcemid-induced MT depolymerization. This MT depolymerization procedure allows a clear assessment of KDMTR, as colcemid disrupts centrosome-driven MT regrowth but not KDMTR. We examined KDMTR in normal Drosophila S2 cells and in S2 cells subjected to RNAi against conserved genes involved in mitotic spindle assembly: mast/orbit/chb (CLASP1), mei-38 (TPX2), mars (HURP), dgt6 (HAUS6), Eb1 (MAPRE1/EB1), Patronin (CAMSAP2), asp (ASPM), and Klp10A (KIF2A). RNAi-mediated depletion of Mast/Orbit, Mei-38, Mars, Dgt6, and Eb1 caused a significant delay in KDMTR, while loss of Patronin had a milder negative effect on this process. In contrast, Asp or Klp10A deficiency increased the rate of KDMTR. These results coupled with the analysis of GFP-tagged proteins (Mast/Orbit, Mei-38, Mars, Eb1, Patronin, and Asp) localization during KDMTR suggested a model for kinetochore-dependent spindle reassembly. We propose that kinetochores capture the plus ends of MTs nucleated in their vicinity and that these MTs elongate at kinetochores through the action of Mast/Orbit. The Asp protein binds the MT minus ends since the beginning of KDMTR, preventing excessive and disorganized MT regrowth. Mei-38, Mars, Dgt6, Eb1, and Patronin positively regulate polymerization, bundling, and stabilization of regrowing MTs until a bipolar spindle is reformed.</abstract><pub>MDPI AG</pub><doi>10.3390/cells11142127</doi></addata></record>
fulltext fulltext
identifier ISSN: 2073-4409
ispartof Cells (Basel, Switzerland), 2022-07, Vol.11 (14)
issn 2073-4409
2073-4409
language eng
recordid cdi_gale_infotracmisc_A723061089
source Publicly Available Content Database; PubMed Central
subjects Analysis
Control
Drosophila
Genetic aspects
Identification and classification
Kinetochores
Methods
Microtubules
Polymerization
Structure
title Genetic Control of Kinetochore-Driven Microtubule Growth in IDrosophila/I Mitosis
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-09-21T09%3A35%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Genetic%20Control%20of%20Kinetochore-Driven%20Microtubule%20Growth%20in%20IDrosophila/I%20Mitosis&rft.jtitle=Cells%20(Basel,%20Switzerland)&rft.au=Popova,%20Julia%20V&rft.date=2022-07-06&rft.volume=11&rft.issue=14&rft.issn=2073-4409&rft.eissn=2073-4409&rft_id=info:doi/10.3390/cells11142127&rft_dat=%3Cgale%3EA723061089%3C/gale%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-g679-84c511da1beaa2bd5d4ce3d991e7868ccdbfe0a3ca4341bf2b374c417d9a6c7d3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_galeid=A723061089&rfr_iscdi=true