Loading…

The active fragments of ghrelin cross the blood–brain barrier and enter the brain to produce antinociceptive effects after systemic administration

G (1-5)-NH 2 , G (1-7)-NH 2 , and G (1-9) are the active fragments of ghrelin. The aim of this study was to investigate the antinociceptive effects, their ability to cross the blood–brain barrier, and the receptor mechanism(s) of these fragments using the tail withdrawal test in male Kunming mice. T...

Full description

Saved in:
Bibliographic Details
Published in:Canadian journal of physiology and pharmacology 2021-10, Vol.99 (10), p.1057-1068
Main Authors: Fan, Bao-wei, Liu, Yong-ling, Zhu, Gui-xian, Wu, Bing, Zhang, Min-min, Deng, Qing, Wang, Jing-lei, Chen, Jia-xiang, Han, Ren-wen, Wei, Jie
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c520t-dd239b742501d19239965bf51487ff46345c289f8734b623d672f09d270eee743
container_end_page 1068
container_issue 10
container_start_page 1057
container_title Canadian journal of physiology and pharmacology
container_volume 99
creator Fan, Bao-wei
Liu, Yong-ling
Zhu, Gui-xian
Wu, Bing
Zhang, Min-min
Deng, Qing
Wang, Jing-lei
Chen, Jia-xiang
Han, Ren-wen
Wei, Jie
description G (1-5)-NH 2 , G (1-7)-NH 2 , and G (1-9) are the active fragments of ghrelin. The aim of this study was to investigate the antinociceptive effects, their ability to cross the blood–brain barrier, and the receptor mechanism(s) of these fragments using the tail withdrawal test in male Kunming mice. The antinociceptive effects of these fragments (2, 6, 20, and 60 nmol/mouse) were tested at 5, 10, 20, 30, 40, 50, and 60 min after intravenous (i.v.) injection. These fragments induced dose- and time-related antinociceptive effects relative to saline. Using the near infrared fluorescence imaging experiments, our results showed that these fragments could cross the brain–blood barrier and enter the brain. The antinociceptive effects of these fragments were completely antagonized by naloxone (intracerebroventricular, i.c.v.); however, naloxone methiodide (intraperitoneal, i.p.), which is the peripheral restricted opioid receptor antagonist, did not antagonize these antinociceptive effects. Furthermore, the GHS-R1α antagonist [D-Lys 3 ]-GHRP-6 (i.c.v.) completely antagonized these antinociceptive effects, too. These results suggested that these fragments induced antinociceptive effects through central opioid receptors and GHS-R1α. In conclusion, our studies indicated that these active fragments of ghrelin could cross the brain–blood barrier and enter the brain and induce antinociceptive effects through central opioid receptors and GHS-R1α after intravenous injection.
doi_str_mv 10.1139/cjpp-2020-0668
format article
fullrecord <record><control><sourceid>gale_nrcre</sourceid><recordid>TN_cdi_gale_infotraccpiq_678805089</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A678805089</galeid><sourcerecordid>A678805089</sourcerecordid><originalsourceid>FETCH-LOGICAL-c520t-dd239b742501d19239965bf51487ff46345c289f8734b623d672f09d270eee743</originalsourceid><addsrcrecordid>eNqVkstu1DAUhiMEokNhyxJFsIFFii-5OMuq4lKpAgnK2nLs44xHiZ3aTkV3vAM8IU-CMx0ug0ZCyAv7HH_nP8fWn2WPMTrBmLYv5WaaCoIIKlBdszvZChNUFU1V4rvZCiHEipJgcpQ9CGGTwppRdj87omXZkpRfZd8u15ALGc015NqLfgQbQ-503q89DMbm0rsQ8piobnBOff_ytfMi5TvhvQGfC6vyVJNOW2Z7F10-eadmmaRtNNZJI2Ha9gCtQaYOQi8l4SZEGI3MhRqNNSF6EY2zD7N7WgwBHu324-zT61eXZ2-Li_dvzs9OLwpZERQLpQhtu6YkFcIKtylo66rTFS5Zo3VZ07KShLWaNbTsakJV3RCNWkUaBABNSY-z57e6adqrGULkowkShkFYcHPgpGoQbSrKWEKf_YVu3Oxtmm6hGsoqVKLfVC8G4MZql14kF1F-WjeMoQqxNlHFAaoHC14MzoI2Kb3HPz3Ay8lc8T-hkwNQWmr54IOqL_YKEhPhc-zFHAI___jhP9h3--xukK1zPGg-eTMKf8Mx4otn-eJZvniWL55NBU92Xzt3I6hf-E-TJgDfAtZLDwGEl-t_if4AzzP1lA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2577385040</pqid></control><display><type>article</type><title>The active fragments of ghrelin cross the blood–brain barrier and enter the brain to produce antinociceptive effects after systemic administration</title><source>SPORTDiscus</source><creator>Fan, Bao-wei ; Liu, Yong-ling ; Zhu, Gui-xian ; Wu, Bing ; Zhang, Min-min ; Deng, Qing ; Wang, Jing-lei ; Chen, Jia-xiang ; Han, Ren-wen ; Wei, Jie</creator><creatorcontrib>Fan, Bao-wei ; Liu, Yong-ling ; Zhu, Gui-xian ; Wu, Bing ; Zhang, Min-min ; Deng, Qing ; Wang, Jing-lei ; Chen, Jia-xiang ; Han, Ren-wen ; Wei, Jie</creatorcontrib><description>G (1-5)-NH 2 , G (1-7)-NH 2 , and G (1-9) are the active fragments of ghrelin. The aim of this study was to investigate the antinociceptive effects, their ability to cross the blood–brain barrier, and the receptor mechanism(s) of these fragments using the tail withdrawal test in male Kunming mice. The antinociceptive effects of these fragments (2, 6, 20, and 60 nmol/mouse) were tested at 5, 10, 20, 30, 40, 50, and 60 min after intravenous (i.v.) injection. These fragments induced dose- and time-related antinociceptive effects relative to saline. Using the near infrared fluorescence imaging experiments, our results showed that these fragments could cross the brain–blood barrier and enter the brain. The antinociceptive effects of these fragments were completely antagonized by naloxone (intracerebroventricular, i.c.v.); however, naloxone methiodide (intraperitoneal, i.p.), which is the peripheral restricted opioid receptor antagonist, did not antagonize these antinociceptive effects. Furthermore, the GHS-R1α antagonist [D-Lys 3 ]-GHRP-6 (i.c.v.) completely antagonized these antinociceptive effects, too. These results suggested that these fragments induced antinociceptive effects through central opioid receptors and GHS-R1α. In conclusion, our studies indicated that these active fragments of ghrelin could cross the brain–blood barrier and enter the brain and induce antinociceptive effects through central opioid receptors and GHS-R1α after intravenous injection.</description><identifier>ISSN: 0008-4212</identifier><identifier>EISSN: 1205-7541</identifier><identifier>DOI: 10.1139/cjpp-2020-0668</identifier><identifier>PMID: 34492212</identifier><language>eng</language><publisher>1840 Woodward Drive, Suite 1, Ottawa, ON K2C 0P7: NRC Research Press</publisher><subject>Acute Pain - drug therapy ; Acute Pain - etiology ; Acute Pain - metabolism ; Acute Pain - pathology ; Analgesics - pharmacology ; Animals ; Animals, Outbred Strains ; antinociception ; barrière hémo-encéphalique ; Blood-brain barrier ; Blood-Brain Barrier - drug effects ; Blood-Brain Barrier - metabolism ; Brain - drug effects ; Brain - metabolism ; Ghrelin ; Ghrelin - administration &amp; dosage ; Ghrelin - pharmacokinetics ; Ghrelin - pharmacology ; GHS-R1α ; Hot Temperature - adverse effects ; Injection ; Intravenous administration ; Male ; Mice ; Naloxone ; Narcotic Antagonists - pharmacology ; Narcotics ; Neuroimaging ; Opioid receptors ; Pain perception ; Physiological aspects ; Receptors, Ghrelin - antagonists &amp; inhibitors ; Receptors, Ghrelin - metabolism ; Receptors, Opioid - chemistry ; Receptors, Opioid - metabolism ; récepteurs opioïdes</subject><ispartof>Canadian journal of physiology and pharmacology, 2021-10, Vol.99 (10), p.1057-1068</ispartof><rights>COPYRIGHT 2021 NRC Research Press</rights><rights>2021 Published by NRC Research Press</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c520t-dd239b742501d19239965bf51487ff46345c289f8734b623d672f09d270eee743</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>315,786,790,27957,27958</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34492212$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Fan, Bao-wei</creatorcontrib><creatorcontrib>Liu, Yong-ling</creatorcontrib><creatorcontrib>Zhu, Gui-xian</creatorcontrib><creatorcontrib>Wu, Bing</creatorcontrib><creatorcontrib>Zhang, Min-min</creatorcontrib><creatorcontrib>Deng, Qing</creatorcontrib><creatorcontrib>Wang, Jing-lei</creatorcontrib><creatorcontrib>Chen, Jia-xiang</creatorcontrib><creatorcontrib>Han, Ren-wen</creatorcontrib><creatorcontrib>Wei, Jie</creatorcontrib><title>The active fragments of ghrelin cross the blood–brain barrier and enter the brain to produce antinociceptive effects after systemic administration</title><title>Canadian journal of physiology and pharmacology</title><addtitle>Can J Physiol Pharmacol</addtitle><description>G (1-5)-NH 2 , G (1-7)-NH 2 , and G (1-9) are the active fragments of ghrelin. The aim of this study was to investigate the antinociceptive effects, their ability to cross the blood–brain barrier, and the receptor mechanism(s) of these fragments using the tail withdrawal test in male Kunming mice. The antinociceptive effects of these fragments (2, 6, 20, and 60 nmol/mouse) were tested at 5, 10, 20, 30, 40, 50, and 60 min after intravenous (i.v.) injection. These fragments induced dose- and time-related antinociceptive effects relative to saline. Using the near infrared fluorescence imaging experiments, our results showed that these fragments could cross the brain–blood barrier and enter the brain. The antinociceptive effects of these fragments were completely antagonized by naloxone (intracerebroventricular, i.c.v.); however, naloxone methiodide (intraperitoneal, i.p.), which is the peripheral restricted opioid receptor antagonist, did not antagonize these antinociceptive effects. Furthermore, the GHS-R1α antagonist [D-Lys 3 ]-GHRP-6 (i.c.v.) completely antagonized these antinociceptive effects, too. These results suggested that these fragments induced antinociceptive effects through central opioid receptors and GHS-R1α. In conclusion, our studies indicated that these active fragments of ghrelin could cross the brain–blood barrier and enter the brain and induce antinociceptive effects through central opioid receptors and GHS-R1α after intravenous injection.</description><subject>Acute Pain - drug therapy</subject><subject>Acute Pain - etiology</subject><subject>Acute Pain - metabolism</subject><subject>Acute Pain - pathology</subject><subject>Analgesics - pharmacology</subject><subject>Animals</subject><subject>Animals, Outbred Strains</subject><subject>antinociception</subject><subject>barrière hémo-encéphalique</subject><subject>Blood-brain barrier</subject><subject>Blood-Brain Barrier - drug effects</subject><subject>Blood-Brain Barrier - metabolism</subject><subject>Brain - drug effects</subject><subject>Brain - metabolism</subject><subject>Ghrelin</subject><subject>Ghrelin - administration &amp; dosage</subject><subject>Ghrelin - pharmacokinetics</subject><subject>Ghrelin - pharmacology</subject><subject>GHS-R1α</subject><subject>Hot Temperature - adverse effects</subject><subject>Injection</subject><subject>Intravenous administration</subject><subject>Male</subject><subject>Mice</subject><subject>Naloxone</subject><subject>Narcotic Antagonists - pharmacology</subject><subject>Narcotics</subject><subject>Neuroimaging</subject><subject>Opioid receptors</subject><subject>Pain perception</subject><subject>Physiological aspects</subject><subject>Receptors, Ghrelin - antagonists &amp; inhibitors</subject><subject>Receptors, Ghrelin - metabolism</subject><subject>Receptors, Opioid - chemistry</subject><subject>Receptors, Opioid - metabolism</subject><subject>récepteurs opioïdes</subject><issn>0008-4212</issn><issn>1205-7541</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNqVkstu1DAUhiMEokNhyxJFsIFFii-5OMuq4lKpAgnK2nLs44xHiZ3aTkV3vAM8IU-CMx0ug0ZCyAv7HH_nP8fWn2WPMTrBmLYv5WaaCoIIKlBdszvZChNUFU1V4rvZCiHEipJgcpQ9CGGTwppRdj87omXZkpRfZd8u15ALGc015NqLfgQbQ-503q89DMbm0rsQ8piobnBOff_ytfMi5TvhvQGfC6vyVJNOW2Z7F10-eadmmaRtNNZJI2Ha9gCtQaYOQi8l4SZEGI3MhRqNNSF6EY2zD7N7WgwBHu324-zT61eXZ2-Li_dvzs9OLwpZERQLpQhtu6YkFcIKtylo66rTFS5Zo3VZ07KShLWaNbTsakJV3RCNWkUaBABNSY-z57e6adqrGULkowkShkFYcHPgpGoQbSrKWEKf_YVu3Oxtmm6hGsoqVKLfVC8G4MZql14kF1F-WjeMoQqxNlHFAaoHC14MzoI2Kb3HPz3Ay8lc8T-hkwNQWmr54IOqL_YKEhPhc-zFHAI___jhP9h3--xukK1zPGg-eTMKf8Mx4otn-eJZvniWL55NBU92Xzt3I6hf-E-TJgDfAtZLDwGEl-t_if4AzzP1lA</recordid><startdate>20211001</startdate><enddate>20211001</enddate><creator>Fan, Bao-wei</creator><creator>Liu, Yong-ling</creator><creator>Zhu, Gui-xian</creator><creator>Wu, Bing</creator><creator>Zhang, Min-min</creator><creator>Deng, Qing</creator><creator>Wang, Jing-lei</creator><creator>Chen, Jia-xiang</creator><creator>Han, Ren-wen</creator><creator>Wei, Jie</creator><general>NRC Research Press</general><general>Canadian Science Publishing NRC Research Press</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ISN</scope><scope>ISR</scope><scope>7QP</scope><scope>7QR</scope><scope>7TK</scope><scope>8FD</scope><scope>FR3</scope><scope>K9.</scope><scope>NAPCQ</scope><scope>P64</scope><scope>7X8</scope></search><sort><creationdate>20211001</creationdate><title>The active fragments of ghrelin cross the blood–brain barrier and enter the brain to produce antinociceptive effects after systemic administration</title><author>Fan, Bao-wei ; Liu, Yong-ling ; Zhu, Gui-xian ; Wu, Bing ; Zhang, Min-min ; Deng, Qing ; Wang, Jing-lei ; Chen, Jia-xiang ; Han, Ren-wen ; Wei, Jie</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c520t-dd239b742501d19239965bf51487ff46345c289f8734b623d672f09d270eee743</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Acute Pain - drug therapy</topic><topic>Acute Pain - etiology</topic><topic>Acute Pain - metabolism</topic><topic>Acute Pain - pathology</topic><topic>Analgesics - pharmacology</topic><topic>Animals</topic><topic>Animals, Outbred Strains</topic><topic>antinociception</topic><topic>barrière hémo-encéphalique</topic><topic>Blood-brain barrier</topic><topic>Blood-Brain Barrier - drug effects</topic><topic>Blood-Brain Barrier - metabolism</topic><topic>Brain - drug effects</topic><topic>Brain - metabolism</topic><topic>Ghrelin</topic><topic>Ghrelin - administration &amp; dosage</topic><topic>Ghrelin - pharmacokinetics</topic><topic>Ghrelin - pharmacology</topic><topic>GHS-R1α</topic><topic>Hot Temperature - adverse effects</topic><topic>Injection</topic><topic>Intravenous administration</topic><topic>Male</topic><topic>Mice</topic><topic>Naloxone</topic><topic>Narcotic Antagonists - pharmacology</topic><topic>Narcotics</topic><topic>Neuroimaging</topic><topic>Opioid receptors</topic><topic>Pain perception</topic><topic>Physiological aspects</topic><topic>Receptors, Ghrelin - antagonists &amp; inhibitors</topic><topic>Receptors, Ghrelin - metabolism</topic><topic>Receptors, Opioid - chemistry</topic><topic>Receptors, Opioid - metabolism</topic><topic>récepteurs opioïdes</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fan, Bao-wei</creatorcontrib><creatorcontrib>Liu, Yong-ling</creatorcontrib><creatorcontrib>Zhu, Gui-xian</creatorcontrib><creatorcontrib>Wu, Bing</creatorcontrib><creatorcontrib>Zhang, Min-min</creatorcontrib><creatorcontrib>Deng, Qing</creatorcontrib><creatorcontrib>Wang, Jing-lei</creatorcontrib><creatorcontrib>Chen, Jia-xiang</creatorcontrib><creatorcontrib>Han, Ren-wen</creatorcontrib><creatorcontrib>Wei, Jie</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Canada</collection><collection>Gale In Context: Science</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Canadian journal of physiology and pharmacology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fan, Bao-wei</au><au>Liu, Yong-ling</au><au>Zhu, Gui-xian</au><au>Wu, Bing</au><au>Zhang, Min-min</au><au>Deng, Qing</au><au>Wang, Jing-lei</au><au>Chen, Jia-xiang</au><au>Han, Ren-wen</au><au>Wei, Jie</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The active fragments of ghrelin cross the blood–brain barrier and enter the brain to produce antinociceptive effects after systemic administration</atitle><jtitle>Canadian journal of physiology and pharmacology</jtitle><addtitle>Can J Physiol Pharmacol</addtitle><date>2021-10-01</date><risdate>2021</risdate><volume>99</volume><issue>10</issue><spage>1057</spage><epage>1068</epage><pages>1057-1068</pages><issn>0008-4212</issn><eissn>1205-7541</eissn><notes>ObjectType-Article-1</notes><notes>SourceType-Scholarly Journals-1</notes><notes>ObjectType-Feature-2</notes><notes>content type line 23</notes><abstract>G (1-5)-NH 2 , G (1-7)-NH 2 , and G (1-9) are the active fragments of ghrelin. The aim of this study was to investigate the antinociceptive effects, their ability to cross the blood–brain barrier, and the receptor mechanism(s) of these fragments using the tail withdrawal test in male Kunming mice. The antinociceptive effects of these fragments (2, 6, 20, and 60 nmol/mouse) were tested at 5, 10, 20, 30, 40, 50, and 60 min after intravenous (i.v.) injection. These fragments induced dose- and time-related antinociceptive effects relative to saline. Using the near infrared fluorescence imaging experiments, our results showed that these fragments could cross the brain–blood barrier and enter the brain. The antinociceptive effects of these fragments were completely antagonized by naloxone (intracerebroventricular, i.c.v.); however, naloxone methiodide (intraperitoneal, i.p.), which is the peripheral restricted opioid receptor antagonist, did not antagonize these antinociceptive effects. Furthermore, the GHS-R1α antagonist [D-Lys 3 ]-GHRP-6 (i.c.v.) completely antagonized these antinociceptive effects, too. These results suggested that these fragments induced antinociceptive effects through central opioid receptors and GHS-R1α. In conclusion, our studies indicated that these active fragments of ghrelin could cross the brain–blood barrier and enter the brain and induce antinociceptive effects through central opioid receptors and GHS-R1α after intravenous injection.</abstract><cop>1840 Woodward Drive, Suite 1, Ottawa, ON K2C 0P7</cop><pub>NRC Research Press</pub><pmid>34492212</pmid><doi>10.1139/cjpp-2020-0668</doi><tpages>12</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0008-4212
ispartof Canadian journal of physiology and pharmacology, 2021-10, Vol.99 (10), p.1057-1068
issn 0008-4212
1205-7541
language eng
recordid cdi_gale_infotraccpiq_678805089
source SPORTDiscus
subjects Acute Pain - drug therapy
Acute Pain - etiology
Acute Pain - metabolism
Acute Pain - pathology
Analgesics - pharmacology
Animals
Animals, Outbred Strains
antinociception
barrière hémo-encéphalique
Blood-brain barrier
Blood-Brain Barrier - drug effects
Blood-Brain Barrier - metabolism
Brain - drug effects
Brain - metabolism
Ghrelin
Ghrelin - administration & dosage
Ghrelin - pharmacokinetics
Ghrelin - pharmacology
GHS-R1α
Hot Temperature - adverse effects
Injection
Intravenous administration
Male
Mice
Naloxone
Narcotic Antagonists - pharmacology
Narcotics
Neuroimaging
Opioid receptors
Pain perception
Physiological aspects
Receptors, Ghrelin - antagonists & inhibitors
Receptors, Ghrelin - metabolism
Receptors, Opioid - chemistry
Receptors, Opioid - metabolism
récepteurs opioïdes
title The active fragments of ghrelin cross the blood–brain barrier and enter the brain to produce antinociceptive effects after systemic administration
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-09-23T06%3A33%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_nrcre&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20active%20fragments%20of%20ghrelin%20cross%20the%20blood%E2%80%93brain%20barrier%20and%20enter%20the%20brain%20to%20produce%20antinociceptive%20effects%20after%20systemic%20administration&rft.jtitle=Canadian%20journal%20of%20physiology%20and%20pharmacology&rft.au=Fan,%20Bao-wei&rft.date=2021-10-01&rft.volume=99&rft.issue=10&rft.spage=1057&rft.epage=1068&rft.pages=1057-1068&rft.issn=0008-4212&rft.eissn=1205-7541&rft_id=info:doi/10.1139/cjpp-2020-0668&rft_dat=%3Cgale_nrcre%3EA678805089%3C/gale_nrcre%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c520t-dd239b742501d19239965bf51487ff46345c289f8734b623d672f09d270eee743%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2577385040&rft_id=info:pmid/34492212&rft_galeid=A678805089&rfr_iscdi=true