Loading…

Improved Sensorless Control of Multiphase Synchronous Reluctance Machine Under Position Sensor Fault

This paper presents an investigation on the self-sensing capability of a dual three-phase synchronous reluctance motor. Self-sensing capability refers to the ability of the motor to properly operate in a sensorless drive. The multiphase machine is decomposed into two different three-phase systems ac...

Full description

Saved in:
Bibliographic Details
Published in:IEEE journal of emerging and selected topics in industrial electronics (Print) 2024-01, Vol.5 (1), p.1-9
Main Authors: Galati, Giuseppe, Ortombina, Ludovico, Alberti, Luigi, Berto, Matteo
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c1880-73a9180a2d1826df3d990a044738e4ccd58c29d35e79dc1975a982d82171ff243
cites cdi_FETCH-LOGICAL-c1880-73a9180a2d1826df3d990a044738e4ccd58c29d35e79dc1975a982d82171ff243
container_end_page 9
container_issue 1
container_start_page 1
container_title IEEE journal of emerging and selected topics in industrial electronics (Print)
container_volume 5
creator Galati, Giuseppe
Ortombina, Ludovico
Alberti, Luigi
Berto, Matteo
description This paper presents an investigation on the self-sensing capability of a dual three-phase synchronous reluctance motor. Self-sensing capability refers to the ability of the motor to properly operate in a sensorless drive. The multiphase machine is decomposed into two different three-phase systems according to the multi-stator approach. Several supply scenarios are studied where the two three-phase windings are controlled at different operating points along a reference trajectory. The analysis is carried out both with FEA simulations and experimental tests. In the first part of the paper the rotor is locked to derive the observer trajectories and find the regions in which the motor can operate without position sensor. A comparison between simulated and experimental results is given. Finally, a sensorless control strategy that allows exploiting the motor self-sensing capability under position sensor fault is developed and validated through experimental tests.
doi_str_mv 10.1109/JESTIE.2023.3294100
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1109_JESTIE_2023_3294100</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10179158</ieee_id><sourcerecordid>2912952163</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1880-73a9180a2d1826df3d990a044738e4ccd58c29d35e79dc1975a982d82171ff243</originalsourceid><addsrcrecordid>eNpNkMFKAzEQhoMoWLRPoIeA562ZZLebHKW0WmlRbHsOIZmlW7ZJTXaFvr1bWsTTzOH__mE-Qh6AjQCYen6frtbz6YgzLkaCqxwYuyIDPpZlpspcXP_torglw5R2jDFeAAeWD4ib7w8x_KCjK_QpxAZTopPg2xgaGiq67Jq2PmxNQro6eruNwYcu0S9sOtsab5Eujd3WHunGO4z0M6S6rYO_1NGZ6QvuyU1lmoTDy7wjm9l0PXnLFh-v88nLIrMgJctKYRRIZrgDyceuEk4pZliel0Jibq0rpOXKiQJL5SyosjBKcic5lFBVPBd35Onc27_03WFq9S500fcnNVfAVcFhLPqUOKdsDClFrPQh1nsTjxqYPhnVZ6P6ZFRfjPbU45mqEfEfAaWCQopfkW5ygA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2912952163</pqid></control><display><type>article</type><title>Improved Sensorless Control of Multiphase Synchronous Reluctance Machine Under Position Sensor Fault</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Galati, Giuseppe ; Ortombina, Ludovico ; Alberti, Luigi ; Berto, Matteo</creator><creatorcontrib>Galati, Giuseppe ; Ortombina, Ludovico ; Alberti, Luigi ; Berto, Matteo</creatorcontrib><description>This paper presents an investigation on the self-sensing capability of a dual three-phase synchronous reluctance motor. Self-sensing capability refers to the ability of the motor to properly operate in a sensorless drive. The multiphase machine is decomposed into two different three-phase systems according to the multi-stator approach. Several supply scenarios are studied where the two three-phase windings are controlled at different operating points along a reference trajectory. The analysis is carried out both with FEA simulations and experimental tests. In the first part of the paper the rotor is locked to derive the observer trajectories and find the regions in which the motor can operate without position sensor. A comparison between simulated and experimental results is given. Finally, a sensorless control strategy that allows exploiting the motor self-sensing capability under position sensor fault is developed and validated through experimental tests.</description><identifier>ISSN: 2687-9735</identifier><identifier>EISSN: 2687-9743</identifier><identifier>DOI: 10.1109/JESTIE.2023.3294100</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Coils (windings) ; Couplings ; dual three-phase machine ; Electric motors ; fault tolerant ; Finite element method ; high frequency injection ; Multiphase ; Permanent magnet motors ; position observer ; Position sensing ; Reluctance machinery ; Reluctance motors ; Rotors ; self-sensing capability ; sensorless control ; synchronous reluctance motor ; Torque ; Trajectory ; Trajectory analysis ; Windings</subject><ispartof>IEEE journal of emerging and selected topics in industrial electronics (Print), 2024-01, Vol.5 (1), p.1-9</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c1880-73a9180a2d1826df3d990a044738e4ccd58c29d35e79dc1975a982d82171ff243</citedby><cites>FETCH-LOGICAL-c1880-73a9180a2d1826df3d990a044738e4ccd58c29d35e79dc1975a982d82171ff243</cites><orcidid>0000-0003-4900-9586 ; 0000-0003-3597-2400 ; 0000-0002-6713-4818</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10179158$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>315,786,790,27957,27958,55147</link.rule.ids></links><search><creatorcontrib>Galati, Giuseppe</creatorcontrib><creatorcontrib>Ortombina, Ludovico</creatorcontrib><creatorcontrib>Alberti, Luigi</creatorcontrib><creatorcontrib>Berto, Matteo</creatorcontrib><title>Improved Sensorless Control of Multiphase Synchronous Reluctance Machine Under Position Sensor Fault</title><title>IEEE journal of emerging and selected topics in industrial electronics (Print)</title><addtitle>JESTIE</addtitle><description>This paper presents an investigation on the self-sensing capability of a dual three-phase synchronous reluctance motor. Self-sensing capability refers to the ability of the motor to properly operate in a sensorless drive. The multiphase machine is decomposed into two different three-phase systems according to the multi-stator approach. Several supply scenarios are studied where the two three-phase windings are controlled at different operating points along a reference trajectory. The analysis is carried out both with FEA simulations and experimental tests. In the first part of the paper the rotor is locked to derive the observer trajectories and find the regions in which the motor can operate without position sensor. A comparison between simulated and experimental results is given. Finally, a sensorless control strategy that allows exploiting the motor self-sensing capability under position sensor fault is developed and validated through experimental tests.</description><subject>Coils (windings)</subject><subject>Couplings</subject><subject>dual three-phase machine</subject><subject>Electric motors</subject><subject>fault tolerant</subject><subject>Finite element method</subject><subject>high frequency injection</subject><subject>Multiphase</subject><subject>Permanent magnet motors</subject><subject>position observer</subject><subject>Position sensing</subject><subject>Reluctance machinery</subject><subject>Reluctance motors</subject><subject>Rotors</subject><subject>self-sensing capability</subject><subject>sensorless control</subject><subject>synchronous reluctance motor</subject><subject>Torque</subject><subject>Trajectory</subject><subject>Trajectory analysis</subject><subject>Windings</subject><issn>2687-9735</issn><issn>2687-9743</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><recordid>eNpNkMFKAzEQhoMoWLRPoIeA562ZZLebHKW0WmlRbHsOIZmlW7ZJTXaFvr1bWsTTzOH__mE-Qh6AjQCYen6frtbz6YgzLkaCqxwYuyIDPpZlpspcXP_torglw5R2jDFeAAeWD4ib7w8x_KCjK_QpxAZTopPg2xgaGiq67Jq2PmxNQro6eruNwYcu0S9sOtsab5Eujd3WHunGO4z0M6S6rYO_1NGZ6QvuyU1lmoTDy7wjm9l0PXnLFh-v88nLIrMgJctKYRRIZrgDyceuEk4pZliel0Jibq0rpOXKiQJL5SyosjBKcic5lFBVPBd35Onc27_03WFq9S500fcnNVfAVcFhLPqUOKdsDClFrPQh1nsTjxqYPhnVZ6P6ZFRfjPbU45mqEfEfAaWCQopfkW5ygA</recordid><startdate>20240101</startdate><enddate>20240101</enddate><creator>Galati, Giuseppe</creator><creator>Ortombina, Ludovico</creator><creator>Alberti, Luigi</creator><creator>Berto, Matteo</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-4900-9586</orcidid><orcidid>https://orcid.org/0000-0003-3597-2400</orcidid><orcidid>https://orcid.org/0000-0002-6713-4818</orcidid></search><sort><creationdate>20240101</creationdate><title>Improved Sensorless Control of Multiphase Synchronous Reluctance Machine Under Position Sensor Fault</title><author>Galati, Giuseppe ; Ortombina, Ludovico ; Alberti, Luigi ; Berto, Matteo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1880-73a9180a2d1826df3d990a044738e4ccd58c29d35e79dc1975a982d82171ff243</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Coils (windings)</topic><topic>Couplings</topic><topic>dual three-phase machine</topic><topic>Electric motors</topic><topic>fault tolerant</topic><topic>Finite element method</topic><topic>high frequency injection</topic><topic>Multiphase</topic><topic>Permanent magnet motors</topic><topic>position observer</topic><topic>Position sensing</topic><topic>Reluctance machinery</topic><topic>Reluctance motors</topic><topic>Rotors</topic><topic>self-sensing capability</topic><topic>sensorless control</topic><topic>synchronous reluctance motor</topic><topic>Torque</topic><topic>Trajectory</topic><topic>Trajectory analysis</topic><topic>Windings</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Galati, Giuseppe</creatorcontrib><creatorcontrib>Ortombina, Ludovico</creatorcontrib><creatorcontrib>Alberti, Luigi</creatorcontrib><creatorcontrib>Berto, Matteo</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Xplore</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE journal of emerging and selected topics in industrial electronics (Print)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Galati, Giuseppe</au><au>Ortombina, Ludovico</au><au>Alberti, Luigi</au><au>Berto, Matteo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Improved Sensorless Control of Multiphase Synchronous Reluctance Machine Under Position Sensor Fault</atitle><jtitle>IEEE journal of emerging and selected topics in industrial electronics (Print)</jtitle><stitle>JESTIE</stitle><date>2024-01-01</date><risdate>2024</risdate><volume>5</volume><issue>1</issue><spage>1</spage><epage>9</epage><pages>1-9</pages><issn>2687-9735</issn><eissn>2687-9743</eissn><abstract>This paper presents an investigation on the self-sensing capability of a dual three-phase synchronous reluctance motor. Self-sensing capability refers to the ability of the motor to properly operate in a sensorless drive. The multiphase machine is decomposed into two different three-phase systems according to the multi-stator approach. Several supply scenarios are studied where the two three-phase windings are controlled at different operating points along a reference trajectory. The analysis is carried out both with FEA simulations and experimental tests. In the first part of the paper the rotor is locked to derive the observer trajectories and find the regions in which the motor can operate without position sensor. A comparison between simulated and experimental results is given. Finally, a sensorless control strategy that allows exploiting the motor self-sensing capability under position sensor fault is developed and validated through experimental tests.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/JESTIE.2023.3294100</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0003-4900-9586</orcidid><orcidid>https://orcid.org/0000-0003-3597-2400</orcidid><orcidid>https://orcid.org/0000-0002-6713-4818</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2687-9735
ispartof IEEE journal of emerging and selected topics in industrial electronics (Print), 2024-01, Vol.5 (1), p.1-9
issn 2687-9735
2687-9743
language eng
recordid cdi_crossref_primary_10_1109_JESTIE_2023_3294100
source IEEE Electronic Library (IEL) Journals
subjects Coils (windings)
Couplings
dual three-phase machine
Electric motors
fault tolerant
Finite element method
high frequency injection
Multiphase
Permanent magnet motors
position observer
Position sensing
Reluctance machinery
Reluctance motors
Rotors
self-sensing capability
sensorless control
synchronous reluctance motor
Torque
Trajectory
Trajectory analysis
Windings
title Improved Sensorless Control of Multiphase Synchronous Reluctance Machine Under Position Sensor Fault
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-09-22T23%3A25%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Improved%20Sensorless%20Control%20of%20Multiphase%20Synchronous%20Reluctance%20Machine%20Under%20Position%20Sensor%20Fault&rft.jtitle=IEEE%20journal%20of%20emerging%20and%20selected%20topics%20in%20industrial%20electronics%20(Print)&rft.au=Galati,%20Giuseppe&rft.date=2024-01-01&rft.volume=5&rft.issue=1&rft.spage=1&rft.epage=9&rft.pages=1-9&rft.issn=2687-9735&rft.eissn=2687-9743&rft_id=info:doi/10.1109/JESTIE.2023.3294100&rft_dat=%3Cproquest_cross%3E2912952163%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c1880-73a9180a2d1826df3d990a044738e4ccd58c29d35e79dc1975a982d82171ff243%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2912952163&rft_id=info:pmid/&rft_ieee_id=10179158&rfr_iscdi=true