Loading…

An Efficient OFDM-Based Monostatic Radar Design for Multitarget Detection

In this paper, we propose a monostatic radar design for multitarget detection based on orthogonal-frequency division multiplexing (OFDM), where the monostatic radar is co-located with the transmit antenna. The monostatic antenna has the perfect knowledge of the transmitted signal and listens to echo...

Full description

Saved in:
Bibliographic Details
Published in:IEEE access 2023, Vol.11, p.135090-135105
Main Authors: Delamou, Mamady, Noubir, Guevara, Dang, Shuping, Amhoud, El Mehdi
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c409t-c4fac18bd45cfb80246d92d55486ecb2e20e1d7c0f7c3fd929bac419f395bc4c3
cites cdi_FETCH-LOGICAL-c409t-c4fac18bd45cfb80246d92d55486ecb2e20e1d7c0f7c3fd929bac419f395bc4c3
container_end_page 135105
container_issue
container_start_page 135090
container_title IEEE access
container_volume 11
creator Delamou, Mamady
Noubir, Guevara
Dang, Shuping
Amhoud, El Mehdi
description In this paper, we propose a monostatic radar design for multitarget detection based on orthogonal-frequency division multiplexing (OFDM), where the monostatic radar is co-located with the transmit antenna. The monostatic antenna has the perfect knowledge of the transmitted signal and listens to echoes coming from the reflection of fixed or moving targets. We estimate the target parameters, i.e., range and velocity, using a two-dimensional (2D) periodogram. By this setup we improve the periodogram estimation performance under the condition of low signal-to-noise ratio (SNR) using Zadoff-Chu precoding (ZCP) and the discrete Fourier transform channel estimation (DFT-CE). Furthermore, since the dimensions of the data matrix can be much higher than the number of targets to be detected, we investigate the sparse Fourier transform-based Fourier projection-slice (FPS-SFT) algorithm and compare it to the 2D periodogram. An appropriate system parameterization in the industrial, scientific, and medical (ISM) band of 77 GHz, allows to achieve a range resolution of 30.52 cm and a velocity resolution of 66.79 cm/s.
doi_str_mv 10.1109/ACCESS.2023.3337079
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1109_ACCESS_2023_3337079</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10328976</ieee_id><doaj_id>oai_doaj_org_article_ae198c3a70bc4955bf8fa4fdc25bdbc9</doaj_id><sourcerecordid>2898667432</sourcerecordid><originalsourceid>FETCH-LOGICAL-c409t-c4fac18bd45cfb80246d92d55486ecb2e20e1d7c0f7c3fd929bac419f395bc4c3</originalsourceid><addsrcrecordid>eNpNUU1PAjEQ3RhNJMgv0MMmnsF-bLftERdQEgiJ6Lnp9oOU4BbbcvDfW1xjmMPM5M28N5O8oriHYAIh4E_TpplvtxMEEJ5gjCmg_KoYIFjzMSa4vr7ob4tRjHuQg2WI0EGxnHbl3FqnnOlSuVnM1uNnGY0u177zMcnkVPkmtQzlzES360rrQ7k-HZJLMuxMynAyKjnf3RU3Vh6iGf3VYfGxmL83r-PV5mXZTFdjVQGecrZSQdbqiijbMoCqWnOkCalYbVSLDAIGaqqApQrbPOKtVBXkFnPSqkrhYbHsdbWXe3EM7lOGb-GlE7-ADzshQ377YIQ0kDOFJQWZyQlpLbOysloh0upW8az12Gsdg_86mZjE3p9Cl98XiHFW17TCKG_hfksFH2Mw9v8qBOJsgegtEGcLxJ8FmfXQs5wx5oKBszKt8Q-d_YJr</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2898667432</pqid></control><display><type>article</type><title>An Efficient OFDM-Based Monostatic Radar Design for Multitarget Detection</title><source>IEEE Open Access Journals</source><creator>Delamou, Mamady ; Noubir, Guevara ; Dang, Shuping ; Amhoud, El Mehdi</creator><creatorcontrib>Delamou, Mamady ; Noubir, Guevara ; Dang, Shuping ; Amhoud, El Mehdi</creatorcontrib><description>In this paper, we propose a monostatic radar design for multitarget detection based on orthogonal-frequency division multiplexing (OFDM), where the monostatic radar is co-located with the transmit antenna. The monostatic antenna has the perfect knowledge of the transmitted signal and listens to echoes coming from the reflection of fixed or moving targets. We estimate the target parameters, i.e., range and velocity, using a two-dimensional (2D) periodogram. By this setup we improve the periodogram estimation performance under the condition of low signal-to-noise ratio (SNR) using Zadoff-Chu precoding (ZCP) and the discrete Fourier transform channel estimation (DFT-CE). Furthermore, since the dimensions of the data matrix can be much higher than the number of targets to be detected, we investigate the sparse Fourier transform-based Fourier projection-slice (FPS-SFT) algorithm and compare it to the 2D periodogram. An appropriate system parameterization in the industrial, scientific, and medical (ISM) band of 77 GHz, allows to achieve a range resolution of 30.52 cm and a velocity resolution of 66.79 cm/s.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2023.3337079</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Algorithms ; Antennas ; Channel estimation ; Fourier slice theorem ; Fourier transforms ; joint communication and radar sensing (JCAS) ; monostatic radar ; Moving targets ; OFDM ; Orthogonal Frequency Division Multiplexing ; Parameterization ; Radar ; Radar antennas ; Radar detection ; Sensors ; Signal processing algorithms ; Signal to noise ratio ; Target detection ; Zadoff-Chu precoding</subject><ispartof>IEEE access, 2023, Vol.11, p.135090-135105</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c409t-c4fac18bd45cfb80246d92d55486ecb2e20e1d7c0f7c3fd929bac419f395bc4c3</citedby><cites>FETCH-LOGICAL-c409t-c4fac18bd45cfb80246d92d55486ecb2e20e1d7c0f7c3fd929bac419f395bc4c3</cites><orcidid>0000-0001-5876-2874 ; 0000-0002-4084-7156 ; 0000-0001-6630-5083 ; 0000-0002-0018-815X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10328976$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>315,786,790,4043,27666,27956,27957,27958,55284</link.rule.ids></links><search><creatorcontrib>Delamou, Mamady</creatorcontrib><creatorcontrib>Noubir, Guevara</creatorcontrib><creatorcontrib>Dang, Shuping</creatorcontrib><creatorcontrib>Amhoud, El Mehdi</creatorcontrib><title>An Efficient OFDM-Based Monostatic Radar Design for Multitarget Detection</title><title>IEEE access</title><addtitle>Access</addtitle><description>In this paper, we propose a monostatic radar design for multitarget detection based on orthogonal-frequency division multiplexing (OFDM), where the monostatic radar is co-located with the transmit antenna. The monostatic antenna has the perfect knowledge of the transmitted signal and listens to echoes coming from the reflection of fixed or moving targets. We estimate the target parameters, i.e., range and velocity, using a two-dimensional (2D) periodogram. By this setup we improve the periodogram estimation performance under the condition of low signal-to-noise ratio (SNR) using Zadoff-Chu precoding (ZCP) and the discrete Fourier transform channel estimation (DFT-CE). Furthermore, since the dimensions of the data matrix can be much higher than the number of targets to be detected, we investigate the sparse Fourier transform-based Fourier projection-slice (FPS-SFT) algorithm and compare it to the 2D periodogram. An appropriate system parameterization in the industrial, scientific, and medical (ISM) band of 77 GHz, allows to achieve a range resolution of 30.52 cm and a velocity resolution of 66.79 cm/s.</description><subject>Algorithms</subject><subject>Antennas</subject><subject>Channel estimation</subject><subject>Fourier slice theorem</subject><subject>Fourier transforms</subject><subject>joint communication and radar sensing (JCAS)</subject><subject>monostatic radar</subject><subject>Moving targets</subject><subject>OFDM</subject><subject>Orthogonal Frequency Division Multiplexing</subject><subject>Parameterization</subject><subject>Radar</subject><subject>Radar antennas</subject><subject>Radar detection</subject><subject>Sensors</subject><subject>Signal processing algorithms</subject><subject>Signal to noise ratio</subject><subject>Target detection</subject><subject>Zadoff-Chu precoding</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>DOA</sourceid><recordid>eNpNUU1PAjEQ3RhNJMgv0MMmnsF-bLftERdQEgiJ6Lnp9oOU4BbbcvDfW1xjmMPM5M28N5O8oriHYAIh4E_TpplvtxMEEJ5gjCmg_KoYIFjzMSa4vr7ob4tRjHuQg2WI0EGxnHbl3FqnnOlSuVnM1uNnGY0u177zMcnkVPkmtQzlzES360rrQ7k-HZJLMuxMynAyKjnf3RU3Vh6iGf3VYfGxmL83r-PV5mXZTFdjVQGecrZSQdbqiijbMoCqWnOkCalYbVSLDAIGaqqApQrbPOKtVBXkFnPSqkrhYbHsdbWXe3EM7lOGb-GlE7-ADzshQ377YIQ0kDOFJQWZyQlpLbOysloh0upW8az12Gsdg_86mZjE3p9Cl98XiHFW17TCKG_hfksFH2Mw9v8qBOJsgegtEGcLxJ8FmfXQs5wx5oKBszKt8Q-d_YJr</recordid><startdate>2023</startdate><enddate>2023</enddate><creator>Delamou, Mamady</creator><creator>Noubir, Guevara</creator><creator>Dang, Shuping</creator><creator>Amhoud, El Mehdi</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-5876-2874</orcidid><orcidid>https://orcid.org/0000-0002-4084-7156</orcidid><orcidid>https://orcid.org/0000-0001-6630-5083</orcidid><orcidid>https://orcid.org/0000-0002-0018-815X</orcidid></search><sort><creationdate>2023</creationdate><title>An Efficient OFDM-Based Monostatic Radar Design for Multitarget Detection</title><author>Delamou, Mamady ; Noubir, Guevara ; Dang, Shuping ; Amhoud, El Mehdi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c409t-c4fac18bd45cfb80246d92d55486ecb2e20e1d7c0f7c3fd929bac419f395bc4c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Algorithms</topic><topic>Antennas</topic><topic>Channel estimation</topic><topic>Fourier slice theorem</topic><topic>Fourier transforms</topic><topic>joint communication and radar sensing (JCAS)</topic><topic>monostatic radar</topic><topic>Moving targets</topic><topic>OFDM</topic><topic>Orthogonal Frequency Division Multiplexing</topic><topic>Parameterization</topic><topic>Radar</topic><topic>Radar antennas</topic><topic>Radar detection</topic><topic>Sensors</topic><topic>Signal processing algorithms</topic><topic>Signal to noise ratio</topic><topic>Target detection</topic><topic>Zadoff-Chu precoding</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Delamou, Mamady</creatorcontrib><creatorcontrib>Noubir, Guevara</creatorcontrib><creatorcontrib>Dang, Shuping</creatorcontrib><creatorcontrib>Amhoud, El Mehdi</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998–Present</collection><collection>IEL</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Delamou, Mamady</au><au>Noubir, Guevara</au><au>Dang, Shuping</au><au>Amhoud, El Mehdi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An Efficient OFDM-Based Monostatic Radar Design for Multitarget Detection</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2023</date><risdate>2023</risdate><volume>11</volume><spage>135090</spage><epage>135105</epage><pages>135090-135105</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>In this paper, we propose a monostatic radar design for multitarget detection based on orthogonal-frequency division multiplexing (OFDM), where the monostatic radar is co-located with the transmit antenna. The monostatic antenna has the perfect knowledge of the transmitted signal and listens to echoes coming from the reflection of fixed or moving targets. We estimate the target parameters, i.e., range and velocity, using a two-dimensional (2D) periodogram. By this setup we improve the periodogram estimation performance under the condition of low signal-to-noise ratio (SNR) using Zadoff-Chu precoding (ZCP) and the discrete Fourier transform channel estimation (DFT-CE). Furthermore, since the dimensions of the data matrix can be much higher than the number of targets to be detected, we investigate the sparse Fourier transform-based Fourier projection-slice (FPS-SFT) algorithm and compare it to the 2D periodogram. An appropriate system parameterization in the industrial, scientific, and medical (ISM) band of 77 GHz, allows to achieve a range resolution of 30.52 cm and a velocity resolution of 66.79 cm/s.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2023.3337079</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0001-5876-2874</orcidid><orcidid>https://orcid.org/0000-0002-4084-7156</orcidid><orcidid>https://orcid.org/0000-0001-6630-5083</orcidid><orcidid>https://orcid.org/0000-0002-0018-815X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2169-3536
ispartof IEEE access, 2023, Vol.11, p.135090-135105
issn 2169-3536
2169-3536
language eng
recordid cdi_crossref_primary_10_1109_ACCESS_2023_3337079
source IEEE Open Access Journals
subjects Algorithms
Antennas
Channel estimation
Fourier slice theorem
Fourier transforms
joint communication and radar sensing (JCAS)
monostatic radar
Moving targets
OFDM
Orthogonal Frequency Division Multiplexing
Parameterization
Radar
Radar antennas
Radar detection
Sensors
Signal processing algorithms
Signal to noise ratio
Target detection
Zadoff-Chu precoding
title An Efficient OFDM-Based Monostatic Radar Design for Multitarget Detection
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-09-22T14%3A41%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20Efficient%20OFDM-Based%20Monostatic%20Radar%20Design%20for%20Multitarget%20Detection&rft.jtitle=IEEE%20access&rft.au=Delamou,%20Mamady&rft.date=2023&rft.volume=11&rft.spage=135090&rft.epage=135105&rft.pages=135090-135105&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2023.3337079&rft_dat=%3Cproquest_cross%3E2898667432%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c409t-c4fac18bd45cfb80246d92d55486ecb2e20e1d7c0f7c3fd929bac419f395bc4c3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2898667432&rft_id=info:pmid/&rft_ieee_id=10328976&rfr_iscdi=true