Loading…
An Adaptive Tunicate Swarm Algorithm for Optimization of Shallow Foundation
This paper aims to introduce an adaptive metaheuristic algorithm based on tunicate swarm optimization (TSA) for effectively solving global optimization problems and the optimum design of a shallow spread foundation. The proposed adaptive tunicate swarm optimization (ATSA) has two main phases at each...
Saved in:
Published in: | IEEE access 2022, Vol.10, p.39204-39219 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c338t-94570537a6569347d4c22ebafa10ebe6c78b7c2baa2b1133d2b53c529790c6753 |
---|---|
cites | cdi_FETCH-LOGICAL-c338t-94570537a6569347d4c22ebafa10ebe6c78b7c2baa2b1133d2b53c529790c6753 |
container_end_page | 39219 |
container_issue | |
container_start_page | 39204 |
container_title | IEEE access |
container_volume | 10 |
creator | Arabali, Amirbahador Khajehzadeh, Mohammad Keawsawasvong, Suraparb Mohammed, Adil Hussein Khan, Baseem |
description | This paper aims to introduce an adaptive metaheuristic algorithm based on tunicate swarm optimization (TSA) for effectively solving global optimization problems and the optimum design of a shallow spread foundation. The proposed adaptive tunicate swarm optimization (ATSA) has two main phases at each iteration: searching all around the search space based on a randomly selected tunicate and improving the search using the position of the best tunicate. This modification improves the algorithm's exploration ability while also preventing premature convergence. The suggested algorithm's performance is confirmed using a set of 23 mathematical test functions of well-known CEC 2017 and the outcomes are compared with TSA as well as some effective optimization algorithms. In addition, the new method automates the optimum design of shallow spread foundations while taking two objectives into account: cost and CO 2 emissions. The analysis and design procedures are based on both geotechnical and structural limit states. A case study of a spread foundation has been solved using the proposed methodology, and a sensitivity analysis has been conducted to investigate the effect of soil parameters on the total cost and embedded CO 2 emissions of the foundation. The simulation results demonstrate that, when compared to other competing algorithms, ATSA is superior and may produce better optimal solutions. |
doi_str_mv | 10.1109/ACCESS.2022.3164734 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1109_ACCESS_2022_3164734</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9749081</ieee_id><doaj_id>oai_doaj_org_article_231059e6e9e34a54aedfde6b88aa2189</doaj_id><sourcerecordid>2652701398</sourcerecordid><originalsourceid>FETCH-LOGICAL-c338t-94570537a6569347d4c22ebafa10ebe6c78b7c2baa2b1133d2b53c529790c6753</originalsourceid><addsrcrecordid>eNpNUcFO7DAMrBBIIOALuETivEsSN0lzrFbAQyBxWDhHbupCVt1mX9p9iPf1BIoQvtgazYwtT1FcCL4UgturerW6Xq-Xkku5BKFLA-VBcSKFtgtQoA9_zcfF-ThueK4qQ8qcFPf1wOoWd1P4R-xpPwSPE7H1G6Ytq_uXmML0umVdTOwxc7bhP04hDix2bP2KfR_f2E3cD-0XelYcddiPdP7dT4vnm-un1Z_Fw-Pt3ap-WHiAalrYUhmuwKBW2kJp2tJLSQ12KDg1pL2pGuNlgygbIQBa2SjwSlpjuddGwWlxN_u2ETdul8IW07uLGNwXENOLwzQF35OTILiypMkSlKhKpLZrSTdVld1FZbPX5ey1S_HvnsbJbeI-Dfl8J7WShguwVWbBzPIpjmOi7mer4O4zBDeH4D5DcN8hZNXFrApE9KOwprT5_fAB8EuBxg</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2652701398</pqid></control><display><type>article</type><title>An Adaptive Tunicate Swarm Algorithm for Optimization of Shallow Foundation</title><source>IEEE Xplore Open Access Journals</source><creator>Arabali, Amirbahador ; Khajehzadeh, Mohammad ; Keawsawasvong, Suraparb ; Mohammed, Adil Hussein ; Khan, Baseem</creator><creatorcontrib>Arabali, Amirbahador ; Khajehzadeh, Mohammad ; Keawsawasvong, Suraparb ; Mohammed, Adil Hussein ; Khan, Baseem</creatorcontrib><description>This paper aims to introduce an adaptive metaheuristic algorithm based on tunicate swarm optimization (TSA) for effectively solving global optimization problems and the optimum design of a shallow spread foundation. The proposed adaptive tunicate swarm optimization (ATSA) has two main phases at each iteration: searching all around the search space based on a randomly selected tunicate and improving the search using the position of the best tunicate. This modification improves the algorithm's exploration ability while also preventing premature convergence. The suggested algorithm's performance is confirmed using a set of 23 mathematical test functions of well-known CEC 2017 and the outcomes are compared with TSA as well as some effective optimization algorithms. In addition, the new method automates the optimum design of shallow spread foundations while taking two objectives into account: cost and CO 2 emissions. The analysis and design procedures are based on both geotechnical and structural limit states. A case study of a spread foundation has been solved using the proposed methodology, and a sensitivity analysis has been conducted to investigate the effect of soil parameters on the total cost and embedded CO 2 emissions of the foundation. The simulation results demonstrate that, when compared to other competing algorithms, ATSA is superior and may produce better optimal solutions.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2022.3164734</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Adaptive algorithms ; Algorithms ; Carbon dioxide ; Concrete ; cost ; Cost analysis ; Costs ; CO₂ emissions ; Design optimization ; Functions (mathematics) ; Global optimization ; Heuristic algorithms ; Heuristic methods ; Iterative methods ; Limit states ; Linear programming ; Mathematical analysis ; metaheuristic ; Metaheuristics ; Optimization ; Particle swarm optimization ; Sensitivity analysis ; shallow foundation ; Shallow foundations ; Soil investigations ; Spread foundations ; Tunicate swarm</subject><ispartof>IEEE access, 2022, Vol.10, p.39204-39219</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c338t-94570537a6569347d4c22ebafa10ebe6c78b7c2baa2b1133d2b53c529790c6753</citedby><cites>FETCH-LOGICAL-c338t-94570537a6569347d4c22ebafa10ebe6c78b7c2baa2b1133d2b53c529790c6753</cites><orcidid>0000-0003-1667-386X ; 0000-0002-1760-9838 ; 0000-0002-6697-4663 ; 0000-0002-4577-6836 ; 0000-0002-6531-2051</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9749081$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>315,783,787,4032,27646,27936,27937,27938,55262</link.rule.ids></links><search><creatorcontrib>Arabali, Amirbahador</creatorcontrib><creatorcontrib>Khajehzadeh, Mohammad</creatorcontrib><creatorcontrib>Keawsawasvong, Suraparb</creatorcontrib><creatorcontrib>Mohammed, Adil Hussein</creatorcontrib><creatorcontrib>Khan, Baseem</creatorcontrib><title>An Adaptive Tunicate Swarm Algorithm for Optimization of Shallow Foundation</title><title>IEEE access</title><addtitle>Access</addtitle><description>This paper aims to introduce an adaptive metaheuristic algorithm based on tunicate swarm optimization (TSA) for effectively solving global optimization problems and the optimum design of a shallow spread foundation. The proposed adaptive tunicate swarm optimization (ATSA) has two main phases at each iteration: searching all around the search space based on a randomly selected tunicate and improving the search using the position of the best tunicate. This modification improves the algorithm's exploration ability while also preventing premature convergence. The suggested algorithm's performance is confirmed using a set of 23 mathematical test functions of well-known CEC 2017 and the outcomes are compared with TSA as well as some effective optimization algorithms. In addition, the new method automates the optimum design of shallow spread foundations while taking two objectives into account: cost and CO 2 emissions. The analysis and design procedures are based on both geotechnical and structural limit states. A case study of a spread foundation has been solved using the proposed methodology, and a sensitivity analysis has been conducted to investigate the effect of soil parameters on the total cost and embedded CO 2 emissions of the foundation. The simulation results demonstrate that, when compared to other competing algorithms, ATSA is superior and may produce better optimal solutions.</description><subject>Adaptive algorithms</subject><subject>Algorithms</subject><subject>Carbon dioxide</subject><subject>Concrete</subject><subject>cost</subject><subject>Cost analysis</subject><subject>Costs</subject><subject>CO₂ emissions</subject><subject>Design optimization</subject><subject>Functions (mathematics)</subject><subject>Global optimization</subject><subject>Heuristic algorithms</subject><subject>Heuristic methods</subject><subject>Iterative methods</subject><subject>Limit states</subject><subject>Linear programming</subject><subject>Mathematical analysis</subject><subject>metaheuristic</subject><subject>Metaheuristics</subject><subject>Optimization</subject><subject>Particle swarm optimization</subject><subject>Sensitivity analysis</subject><subject>shallow foundation</subject><subject>Shallow foundations</subject><subject>Soil investigations</subject><subject>Spread foundations</subject><subject>Tunicate swarm</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>DOA</sourceid><recordid>eNpNUcFO7DAMrBBIIOALuETivEsSN0lzrFbAQyBxWDhHbupCVt1mX9p9iPf1BIoQvtgazYwtT1FcCL4UgturerW6Xq-Xkku5BKFLA-VBcSKFtgtQoA9_zcfF-ThueK4qQ8qcFPf1wOoWd1P4R-xpPwSPE7H1G6Ytq_uXmML0umVdTOwxc7bhP04hDix2bP2KfR_f2E3cD-0XelYcddiPdP7dT4vnm-un1Z_Fw-Pt3ap-WHiAalrYUhmuwKBW2kJp2tJLSQ12KDg1pL2pGuNlgygbIQBa2SjwSlpjuddGwWlxN_u2ETdul8IW07uLGNwXENOLwzQF35OTILiypMkSlKhKpLZrSTdVld1FZbPX5ey1S_HvnsbJbeI-Dfl8J7WShguwVWbBzPIpjmOi7mer4O4zBDeH4D5DcN8hZNXFrApE9KOwprT5_fAB8EuBxg</recordid><startdate>2022</startdate><enddate>2022</enddate><creator>Arabali, Amirbahador</creator><creator>Khajehzadeh, Mohammad</creator><creator>Keawsawasvong, Suraparb</creator><creator>Mohammed, Adil Hussein</creator><creator>Khan, Baseem</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-1667-386X</orcidid><orcidid>https://orcid.org/0000-0002-1760-9838</orcidid><orcidid>https://orcid.org/0000-0002-6697-4663</orcidid><orcidid>https://orcid.org/0000-0002-4577-6836</orcidid><orcidid>https://orcid.org/0000-0002-6531-2051</orcidid></search><sort><creationdate>2022</creationdate><title>An Adaptive Tunicate Swarm Algorithm for Optimization of Shallow Foundation</title><author>Arabali, Amirbahador ; Khajehzadeh, Mohammad ; Keawsawasvong, Suraparb ; Mohammed, Adil Hussein ; Khan, Baseem</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c338t-94570537a6569347d4c22ebafa10ebe6c78b7c2baa2b1133d2b53c529790c6753</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Adaptive algorithms</topic><topic>Algorithms</topic><topic>Carbon dioxide</topic><topic>Concrete</topic><topic>cost</topic><topic>Cost analysis</topic><topic>Costs</topic><topic>CO₂ emissions</topic><topic>Design optimization</topic><topic>Functions (mathematics)</topic><topic>Global optimization</topic><topic>Heuristic algorithms</topic><topic>Heuristic methods</topic><topic>Iterative methods</topic><topic>Limit states</topic><topic>Linear programming</topic><topic>Mathematical analysis</topic><topic>metaheuristic</topic><topic>Metaheuristics</topic><topic>Optimization</topic><topic>Particle swarm optimization</topic><topic>Sensitivity analysis</topic><topic>shallow foundation</topic><topic>Shallow foundations</topic><topic>Soil investigations</topic><topic>Spread foundations</topic><topic>Tunicate swarm</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Arabali, Amirbahador</creatorcontrib><creatorcontrib>Khajehzadeh, Mohammad</creatorcontrib><creatorcontrib>Keawsawasvong, Suraparb</creatorcontrib><creatorcontrib>Mohammed, Adil Hussein</creatorcontrib><creatorcontrib>Khan, Baseem</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Xplore Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998–Present</collection><collection>IEEE Electronic Library Online</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Arabali, Amirbahador</au><au>Khajehzadeh, Mohammad</au><au>Keawsawasvong, Suraparb</au><au>Mohammed, Adil Hussein</au><au>Khan, Baseem</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An Adaptive Tunicate Swarm Algorithm for Optimization of Shallow Foundation</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2022</date><risdate>2022</risdate><volume>10</volume><spage>39204</spage><epage>39219</epage><pages>39204-39219</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>This paper aims to introduce an adaptive metaheuristic algorithm based on tunicate swarm optimization (TSA) for effectively solving global optimization problems and the optimum design of a shallow spread foundation. The proposed adaptive tunicate swarm optimization (ATSA) has two main phases at each iteration: searching all around the search space based on a randomly selected tunicate and improving the search using the position of the best tunicate. This modification improves the algorithm's exploration ability while also preventing premature convergence. The suggested algorithm's performance is confirmed using a set of 23 mathematical test functions of well-known CEC 2017 and the outcomes are compared with TSA as well as some effective optimization algorithms. In addition, the new method automates the optimum design of shallow spread foundations while taking two objectives into account: cost and CO 2 emissions. The analysis and design procedures are based on both geotechnical and structural limit states. A case study of a spread foundation has been solved using the proposed methodology, and a sensitivity analysis has been conducted to investigate the effect of soil parameters on the total cost and embedded CO 2 emissions of the foundation. The simulation results demonstrate that, when compared to other competing algorithms, ATSA is superior and may produce better optimal solutions.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2022.3164734</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0003-1667-386X</orcidid><orcidid>https://orcid.org/0000-0002-1760-9838</orcidid><orcidid>https://orcid.org/0000-0002-6697-4663</orcidid><orcidid>https://orcid.org/0000-0002-4577-6836</orcidid><orcidid>https://orcid.org/0000-0002-6531-2051</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2169-3536 |
ispartof | IEEE access, 2022, Vol.10, p.39204-39219 |
issn | 2169-3536 2169-3536 |
language | eng |
recordid | cdi_crossref_primary_10_1109_ACCESS_2022_3164734 |
source | IEEE Xplore Open Access Journals |
subjects | Adaptive algorithms Algorithms Carbon dioxide Concrete cost Cost analysis Costs CO₂ emissions Design optimization Functions (mathematics) Global optimization Heuristic algorithms Heuristic methods Iterative methods Limit states Linear programming Mathematical analysis metaheuristic Metaheuristics Optimization Particle swarm optimization Sensitivity analysis shallow foundation Shallow foundations Soil investigations Spread foundations Tunicate swarm |
title | An Adaptive Tunicate Swarm Algorithm for Optimization of Shallow Foundation |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-11-11T09%3A49%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20Adaptive%20Tunicate%20Swarm%20Algorithm%20for%20Optimization%20of%20Shallow%20Foundation&rft.jtitle=IEEE%20access&rft.au=Arabali,%20Amirbahador&rft.date=2022&rft.volume=10&rft.spage=39204&rft.epage=39219&rft.pages=39204-39219&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2022.3164734&rft_dat=%3Cproquest_cross%3E2652701398%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c338t-94570537a6569347d4c22ebafa10ebe6c78b7c2baa2b1133d2b53c529790c6753%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2652701398&rft_id=info:pmid/&rft_ieee_id=9749081&rfr_iscdi=true |