Loading…

An Adaptive Tunicate Swarm Algorithm for Optimization of Shallow Foundation

This paper aims to introduce an adaptive metaheuristic algorithm based on tunicate swarm optimization (TSA) for effectively solving global optimization problems and the optimum design of a shallow spread foundation. The proposed adaptive tunicate swarm optimization (ATSA) has two main phases at each...

Full description

Saved in:
Bibliographic Details
Published in:IEEE access 2022, Vol.10, p.39204-39219
Main Authors: Arabali, Amirbahador, Khajehzadeh, Mohammad, Keawsawasvong, Suraparb, Mohammed, Adil Hussein, Khan, Baseem
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c338t-94570537a6569347d4c22ebafa10ebe6c78b7c2baa2b1133d2b53c529790c6753
cites cdi_FETCH-LOGICAL-c338t-94570537a6569347d4c22ebafa10ebe6c78b7c2baa2b1133d2b53c529790c6753
container_end_page 39219
container_issue
container_start_page 39204
container_title IEEE access
container_volume 10
creator Arabali, Amirbahador
Khajehzadeh, Mohammad
Keawsawasvong, Suraparb
Mohammed, Adil Hussein
Khan, Baseem
description This paper aims to introduce an adaptive metaheuristic algorithm based on tunicate swarm optimization (TSA) for effectively solving global optimization problems and the optimum design of a shallow spread foundation. The proposed adaptive tunicate swarm optimization (ATSA) has two main phases at each iteration: searching all around the search space based on a randomly selected tunicate and improving the search using the position of the best tunicate. This modification improves the algorithm's exploration ability while also preventing premature convergence. The suggested algorithm's performance is confirmed using a set of 23 mathematical test functions of well-known CEC 2017 and the outcomes are compared with TSA as well as some effective optimization algorithms. In addition, the new method automates the optimum design of shallow spread foundations while taking two objectives into account: cost and CO 2 emissions. The analysis and design procedures are based on both geotechnical and structural limit states. A case study of a spread foundation has been solved using the proposed methodology, and a sensitivity analysis has been conducted to investigate the effect of soil parameters on the total cost and embedded CO 2 emissions of the foundation. The simulation results demonstrate that, when compared to other competing algorithms, ATSA is superior and may produce better optimal solutions.
doi_str_mv 10.1109/ACCESS.2022.3164734
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1109_ACCESS_2022_3164734</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9749081</ieee_id><doaj_id>oai_doaj_org_article_231059e6e9e34a54aedfde6b88aa2189</doaj_id><sourcerecordid>2652701398</sourcerecordid><originalsourceid>FETCH-LOGICAL-c338t-94570537a6569347d4c22ebafa10ebe6c78b7c2baa2b1133d2b53c529790c6753</originalsourceid><addsrcrecordid>eNpNUcFO7DAMrBBIIOALuETivEsSN0lzrFbAQyBxWDhHbupCVt1mX9p9iPf1BIoQvtgazYwtT1FcCL4UgturerW6Xq-Xkku5BKFLA-VBcSKFtgtQoA9_zcfF-ThueK4qQ8qcFPf1wOoWd1P4R-xpPwSPE7H1G6Ytq_uXmML0umVdTOwxc7bhP04hDix2bP2KfR_f2E3cD-0XelYcddiPdP7dT4vnm-un1Z_Fw-Pt3ap-WHiAalrYUhmuwKBW2kJp2tJLSQ12KDg1pL2pGuNlgygbIQBa2SjwSlpjuddGwWlxN_u2ETdul8IW07uLGNwXENOLwzQF35OTILiypMkSlKhKpLZrSTdVld1FZbPX5ey1S_HvnsbJbeI-Dfl8J7WShguwVWbBzPIpjmOi7mer4O4zBDeH4D5DcN8hZNXFrApE9KOwprT5_fAB8EuBxg</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2652701398</pqid></control><display><type>article</type><title>An Adaptive Tunicate Swarm Algorithm for Optimization of Shallow Foundation</title><source>IEEE Xplore Open Access Journals</source><creator>Arabali, Amirbahador ; Khajehzadeh, Mohammad ; Keawsawasvong, Suraparb ; Mohammed, Adil Hussein ; Khan, Baseem</creator><creatorcontrib>Arabali, Amirbahador ; Khajehzadeh, Mohammad ; Keawsawasvong, Suraparb ; Mohammed, Adil Hussein ; Khan, Baseem</creatorcontrib><description>This paper aims to introduce an adaptive metaheuristic algorithm based on tunicate swarm optimization (TSA) for effectively solving global optimization problems and the optimum design of a shallow spread foundation. The proposed adaptive tunicate swarm optimization (ATSA) has two main phases at each iteration: searching all around the search space based on a randomly selected tunicate and improving the search using the position of the best tunicate. This modification improves the algorithm's exploration ability while also preventing premature convergence. The suggested algorithm's performance is confirmed using a set of 23 mathematical test functions of well-known CEC 2017 and the outcomes are compared with TSA as well as some effective optimization algorithms. In addition, the new method automates the optimum design of shallow spread foundations while taking two objectives into account: cost and CO 2 emissions. The analysis and design procedures are based on both geotechnical and structural limit states. A case study of a spread foundation has been solved using the proposed methodology, and a sensitivity analysis has been conducted to investigate the effect of soil parameters on the total cost and embedded CO 2 emissions of the foundation. The simulation results demonstrate that, when compared to other competing algorithms, ATSA is superior and may produce better optimal solutions.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2022.3164734</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Adaptive algorithms ; Algorithms ; Carbon dioxide ; Concrete ; cost ; Cost analysis ; Costs ; CO₂ emissions ; Design optimization ; Functions (mathematics) ; Global optimization ; Heuristic algorithms ; Heuristic methods ; Iterative methods ; Limit states ; Linear programming ; Mathematical analysis ; metaheuristic ; Metaheuristics ; Optimization ; Particle swarm optimization ; Sensitivity analysis ; shallow foundation ; Shallow foundations ; Soil investigations ; Spread foundations ; Tunicate swarm</subject><ispartof>IEEE access, 2022, Vol.10, p.39204-39219</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c338t-94570537a6569347d4c22ebafa10ebe6c78b7c2baa2b1133d2b53c529790c6753</citedby><cites>FETCH-LOGICAL-c338t-94570537a6569347d4c22ebafa10ebe6c78b7c2baa2b1133d2b53c529790c6753</cites><orcidid>0000-0003-1667-386X ; 0000-0002-1760-9838 ; 0000-0002-6697-4663 ; 0000-0002-4577-6836 ; 0000-0002-6531-2051</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9749081$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>315,783,787,4032,27646,27936,27937,27938,55262</link.rule.ids></links><search><creatorcontrib>Arabali, Amirbahador</creatorcontrib><creatorcontrib>Khajehzadeh, Mohammad</creatorcontrib><creatorcontrib>Keawsawasvong, Suraparb</creatorcontrib><creatorcontrib>Mohammed, Adil Hussein</creatorcontrib><creatorcontrib>Khan, Baseem</creatorcontrib><title>An Adaptive Tunicate Swarm Algorithm for Optimization of Shallow Foundation</title><title>IEEE access</title><addtitle>Access</addtitle><description>This paper aims to introduce an adaptive metaheuristic algorithm based on tunicate swarm optimization (TSA) for effectively solving global optimization problems and the optimum design of a shallow spread foundation. The proposed adaptive tunicate swarm optimization (ATSA) has two main phases at each iteration: searching all around the search space based on a randomly selected tunicate and improving the search using the position of the best tunicate. This modification improves the algorithm's exploration ability while also preventing premature convergence. The suggested algorithm's performance is confirmed using a set of 23 mathematical test functions of well-known CEC 2017 and the outcomes are compared with TSA as well as some effective optimization algorithms. In addition, the new method automates the optimum design of shallow spread foundations while taking two objectives into account: cost and CO 2 emissions. The analysis and design procedures are based on both geotechnical and structural limit states. A case study of a spread foundation has been solved using the proposed methodology, and a sensitivity analysis has been conducted to investigate the effect of soil parameters on the total cost and embedded CO 2 emissions of the foundation. The simulation results demonstrate that, when compared to other competing algorithms, ATSA is superior and may produce better optimal solutions.</description><subject>Adaptive algorithms</subject><subject>Algorithms</subject><subject>Carbon dioxide</subject><subject>Concrete</subject><subject>cost</subject><subject>Cost analysis</subject><subject>Costs</subject><subject>CO₂ emissions</subject><subject>Design optimization</subject><subject>Functions (mathematics)</subject><subject>Global optimization</subject><subject>Heuristic algorithms</subject><subject>Heuristic methods</subject><subject>Iterative methods</subject><subject>Limit states</subject><subject>Linear programming</subject><subject>Mathematical analysis</subject><subject>metaheuristic</subject><subject>Metaheuristics</subject><subject>Optimization</subject><subject>Particle swarm optimization</subject><subject>Sensitivity analysis</subject><subject>shallow foundation</subject><subject>Shallow foundations</subject><subject>Soil investigations</subject><subject>Spread foundations</subject><subject>Tunicate swarm</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>DOA</sourceid><recordid>eNpNUcFO7DAMrBBIIOALuETivEsSN0lzrFbAQyBxWDhHbupCVt1mX9p9iPf1BIoQvtgazYwtT1FcCL4UgturerW6Xq-Xkku5BKFLA-VBcSKFtgtQoA9_zcfF-ThueK4qQ8qcFPf1wOoWd1P4R-xpPwSPE7H1G6Ytq_uXmML0umVdTOwxc7bhP04hDix2bP2KfR_f2E3cD-0XelYcddiPdP7dT4vnm-un1Z_Fw-Pt3ap-WHiAalrYUhmuwKBW2kJp2tJLSQ12KDg1pL2pGuNlgygbIQBa2SjwSlpjuddGwWlxN_u2ETdul8IW07uLGNwXENOLwzQF35OTILiypMkSlKhKpLZrSTdVld1FZbPX5ey1S_HvnsbJbeI-Dfl8J7WShguwVWbBzPIpjmOi7mer4O4zBDeH4D5DcN8hZNXFrApE9KOwprT5_fAB8EuBxg</recordid><startdate>2022</startdate><enddate>2022</enddate><creator>Arabali, Amirbahador</creator><creator>Khajehzadeh, Mohammad</creator><creator>Keawsawasvong, Suraparb</creator><creator>Mohammed, Adil Hussein</creator><creator>Khan, Baseem</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-1667-386X</orcidid><orcidid>https://orcid.org/0000-0002-1760-9838</orcidid><orcidid>https://orcid.org/0000-0002-6697-4663</orcidid><orcidid>https://orcid.org/0000-0002-4577-6836</orcidid><orcidid>https://orcid.org/0000-0002-6531-2051</orcidid></search><sort><creationdate>2022</creationdate><title>An Adaptive Tunicate Swarm Algorithm for Optimization of Shallow Foundation</title><author>Arabali, Amirbahador ; Khajehzadeh, Mohammad ; Keawsawasvong, Suraparb ; Mohammed, Adil Hussein ; Khan, Baseem</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c338t-94570537a6569347d4c22ebafa10ebe6c78b7c2baa2b1133d2b53c529790c6753</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Adaptive algorithms</topic><topic>Algorithms</topic><topic>Carbon dioxide</topic><topic>Concrete</topic><topic>cost</topic><topic>Cost analysis</topic><topic>Costs</topic><topic>CO₂ emissions</topic><topic>Design optimization</topic><topic>Functions (mathematics)</topic><topic>Global optimization</topic><topic>Heuristic algorithms</topic><topic>Heuristic methods</topic><topic>Iterative methods</topic><topic>Limit states</topic><topic>Linear programming</topic><topic>Mathematical analysis</topic><topic>metaheuristic</topic><topic>Metaheuristics</topic><topic>Optimization</topic><topic>Particle swarm optimization</topic><topic>Sensitivity analysis</topic><topic>shallow foundation</topic><topic>Shallow foundations</topic><topic>Soil investigations</topic><topic>Spread foundations</topic><topic>Tunicate swarm</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Arabali, Amirbahador</creatorcontrib><creatorcontrib>Khajehzadeh, Mohammad</creatorcontrib><creatorcontrib>Keawsawasvong, Suraparb</creatorcontrib><creatorcontrib>Mohammed, Adil Hussein</creatorcontrib><creatorcontrib>Khan, Baseem</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Xplore Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998–Present</collection><collection>IEEE Electronic Library Online</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Arabali, Amirbahador</au><au>Khajehzadeh, Mohammad</au><au>Keawsawasvong, Suraparb</au><au>Mohammed, Adil Hussein</au><au>Khan, Baseem</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An Adaptive Tunicate Swarm Algorithm for Optimization of Shallow Foundation</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2022</date><risdate>2022</risdate><volume>10</volume><spage>39204</spage><epage>39219</epage><pages>39204-39219</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>This paper aims to introduce an adaptive metaheuristic algorithm based on tunicate swarm optimization (TSA) for effectively solving global optimization problems and the optimum design of a shallow spread foundation. The proposed adaptive tunicate swarm optimization (ATSA) has two main phases at each iteration: searching all around the search space based on a randomly selected tunicate and improving the search using the position of the best tunicate. This modification improves the algorithm's exploration ability while also preventing premature convergence. The suggested algorithm's performance is confirmed using a set of 23 mathematical test functions of well-known CEC 2017 and the outcomes are compared with TSA as well as some effective optimization algorithms. In addition, the new method automates the optimum design of shallow spread foundations while taking two objectives into account: cost and CO 2 emissions. The analysis and design procedures are based on both geotechnical and structural limit states. A case study of a spread foundation has been solved using the proposed methodology, and a sensitivity analysis has been conducted to investigate the effect of soil parameters on the total cost and embedded CO 2 emissions of the foundation. The simulation results demonstrate that, when compared to other competing algorithms, ATSA is superior and may produce better optimal solutions.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2022.3164734</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0003-1667-386X</orcidid><orcidid>https://orcid.org/0000-0002-1760-9838</orcidid><orcidid>https://orcid.org/0000-0002-6697-4663</orcidid><orcidid>https://orcid.org/0000-0002-4577-6836</orcidid><orcidid>https://orcid.org/0000-0002-6531-2051</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2169-3536
ispartof IEEE access, 2022, Vol.10, p.39204-39219
issn 2169-3536
2169-3536
language eng
recordid cdi_crossref_primary_10_1109_ACCESS_2022_3164734
source IEEE Xplore Open Access Journals
subjects Adaptive algorithms
Algorithms
Carbon dioxide
Concrete
cost
Cost analysis
Costs
CO₂ emissions
Design optimization
Functions (mathematics)
Global optimization
Heuristic algorithms
Heuristic methods
Iterative methods
Limit states
Linear programming
Mathematical analysis
metaheuristic
Metaheuristics
Optimization
Particle swarm optimization
Sensitivity analysis
shallow foundation
Shallow foundations
Soil investigations
Spread foundations
Tunicate swarm
title An Adaptive Tunicate Swarm Algorithm for Optimization of Shallow Foundation
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-11-11T09%3A49%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20Adaptive%20Tunicate%20Swarm%20Algorithm%20for%20Optimization%20of%20Shallow%20Foundation&rft.jtitle=IEEE%20access&rft.au=Arabali,%20Amirbahador&rft.date=2022&rft.volume=10&rft.spage=39204&rft.epage=39219&rft.pages=39204-39219&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2022.3164734&rft_dat=%3Cproquest_cross%3E2652701398%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c338t-94570537a6569347d4c22ebafa10ebe6c78b7c2baa2b1133d2b53c529790c6753%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2652701398&rft_id=info:pmid/&rft_ieee_id=9749081&rfr_iscdi=true