Loading…
Physioxic human cell culture improves viability, metabolism, and mitochondrial morphology while reducing DNA damage
ABSTRACTMulticellular organisms balance oxygen delivery and toxicity by having oxygen pass through several barriers before cellular delivery. In human cell culture, these physiologic barriers are removed, exposing cells to higher oxygen levels. Human cells cultured in ambient air may appear normal,...
Saved in:
Published in: | The FASEB journal 2019-04, Vol.33 (4), p.5716-5728 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c345R-898fecd52c05b18de4a8c1702bac8bb8f4b05acf1523bc3a76ffd46d7c1b6d73 |
---|---|
cites | cdi_FETCH-LOGICAL-c345R-898fecd52c05b18de4a8c1702bac8bb8f4b05acf1523bc3a76ffd46d7c1b6d73 |
container_end_page | 5728 |
container_issue | 4 |
container_start_page | 5716 |
container_title | The FASEB journal |
container_volume | 33 |
creator | Timpano, Sara Guild, Brianna D. Specker, Erin J. Melanson, Gaelan Medeiros, Philip J. Sproul, Shannon L. J. Uniacke, James |
description | ABSTRACTMulticellular organisms balance oxygen delivery and toxicity by having oxygen pass through several barriers before cellular delivery. In human cell culture, these physiologic barriers are removed, exposing cells to higher oxygen levels. Human cells cultured in ambient air may appear normal, but this is difficult to assess without a comparison at physiologic oxygen. Here, we examined the effects of culturing human cells throughout the spectrum of oxygen availability on oxidative damage to macromolecules, viability, proliferation, the antioxidant and DNA damage responses, metabolism, and mitochondrial fusion and morphology. We surveyed 4 human cell lines cultured for 3 d at 7 oxygen conditions between 1 and 21% O2. We show that oxygen levels and cellular benefit are not inversely proportional, but the benefit peaks within the physioxic range. Normoxic cells are in a perpetual state of responding to damaged macromolecules and mitochondrial networks relative to physioxic cells, which could compromise an investigation. These data contribute to the concept of an optimal oxygen availability for cell culture in the physioxic range where the oxygen is not too high to reduce oxidative damage, and not too low for efficient oxidative metabolism, but just right: the Goldiloxygen zone.—Timpano, S., Guild, B. D., Specker, E. J., Melanson, G., Medeiros, P. J., Sproul, S. L. J., Uniacke, J. Physioxic human cell culture improves viability, metabolism, and mitochondrial morphology while reducing DNA damage. FASEB J. 33, 5716–5728 (2019). www.fasebj.org |
doi_str_mv | 10.1096/fj.201802279R |
format | article |
fullrecord | <record><control><sourceid>wiley_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1096_fj_201802279R</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>FSB2FJ201802279R</sourcerecordid><originalsourceid>FETCH-LOGICAL-c345R-898fecd52c05b18de4a8c1702bac8bb8f4b05acf1523bc3a76ffd46d7c1b6d73</originalsourceid><addsrcrecordid>eNp9kLlOAzEURS0EgrCUtMgfkIHnWRyPqMISFiFAQD_ymnFkx5GdAebvCQpbRfNec3SkexA6JHBMoKYnZnacA2GQ56P6aQMNSFVARhmFTTQAVucZpQXbQbspzQCAAKHbaKcAWtY1hQFKj22fbHi3Ered53MstXNYdm7ZRY2tX8TwqhN-tVxYZ5f9EHu95CI4m_wQ87nC3i6DbMNcRcsd9iEu2uDCtMdvrXUaR606aedTfHE_xop7PtX7aMtwl_TB199DL5PLl_Pr7O7h6uZ8fJfJoqyeMlYzo6WqcgmVIEzpkjNJRpALLpkQzJQCKi4NqfJCyIKPqDGqpGokiVjdYg9la62MIaWoTbOI1vPYNwSaz3aNmTW_7Vb80ZpfdMJr9UN_x1oBp2vgbTWs_9_WTJ7P8sntH_0HH21-4Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Physioxic human cell culture improves viability, metabolism, and mitochondrial morphology while reducing DNA damage</title><source>Wiley</source><creator>Timpano, Sara ; Guild, Brianna D. ; Specker, Erin J. ; Melanson, Gaelan ; Medeiros, Philip J. ; Sproul, Shannon L. J. ; Uniacke, James</creator><creatorcontrib>Timpano, Sara ; Guild, Brianna D. ; Specker, Erin J. ; Melanson, Gaelan ; Medeiros, Philip J. ; Sproul, Shannon L. J. ; Uniacke, James</creatorcontrib><description>ABSTRACTMulticellular organisms balance oxygen delivery and toxicity by having oxygen pass through several barriers before cellular delivery. In human cell culture, these physiologic barriers are removed, exposing cells to higher oxygen levels. Human cells cultured in ambient air may appear normal, but this is difficult to assess without a comparison at physiologic oxygen. Here, we examined the effects of culturing human cells throughout the spectrum of oxygen availability on oxidative damage to macromolecules, viability, proliferation, the antioxidant and DNA damage responses, metabolism, and mitochondrial fusion and morphology. We surveyed 4 human cell lines cultured for 3 d at 7 oxygen conditions between 1 and 21% O2. We show that oxygen levels and cellular benefit are not inversely proportional, but the benefit peaks within the physioxic range. Normoxic cells are in a perpetual state of responding to damaged macromolecules and mitochondrial networks relative to physioxic cells, which could compromise an investigation. These data contribute to the concept of an optimal oxygen availability for cell culture in the physioxic range where the oxygen is not too high to reduce oxidative damage, and not too low for efficient oxidative metabolism, but just right: the Goldiloxygen zone.—Timpano, S., Guild, B. D., Specker, E. J., Melanson, G., Medeiros, P. J., Sproul, S. L. J., Uniacke, J. Physioxic human cell culture improves viability, metabolism, and mitochondrial morphology while reducing DNA damage. FASEB J. 33, 5716–5728 (2019). www.fasebj.org</description><identifier>ISSN: 0892-6638</identifier><identifier>EISSN: 1530-6860</identifier><identifier>DOI: 10.1096/fj.201802279R</identifier><identifier>PMID: 30649960</identifier><language>eng</language><publisher>United States: Federation of American Societies for Experimental Biology</publisher><subject>Antioxidants - metabolism ; Cell Line, Tumor ; Cell Proliferation - genetics ; Cell Survival - genetics ; Cells, Cultured ; DNA Damage - genetics ; Humans ; Mitochondria - genetics ; Mitochondria - metabolism ; Oxidation-Reduction ; oxidative stress ; Oxidative Stress - genetics ; oxygen ; Oxygen - metabolism ; physioxia</subject><ispartof>The FASEB journal, 2019-04, Vol.33 (4), p.5716-5728</ispartof><rights>FASEB</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c345R-898fecd52c05b18de4a8c1702bac8bb8f4b05acf1523bc3a76ffd46d7c1b6d73</citedby><cites>FETCH-LOGICAL-c345R-898fecd52c05b18de4a8c1702bac8bb8f4b05acf1523bc3a76ffd46d7c1b6d73</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>315,783,787,27938,27939</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30649960$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Timpano, Sara</creatorcontrib><creatorcontrib>Guild, Brianna D.</creatorcontrib><creatorcontrib>Specker, Erin J.</creatorcontrib><creatorcontrib>Melanson, Gaelan</creatorcontrib><creatorcontrib>Medeiros, Philip J.</creatorcontrib><creatorcontrib>Sproul, Shannon L. J.</creatorcontrib><creatorcontrib>Uniacke, James</creatorcontrib><title>Physioxic human cell culture improves viability, metabolism, and mitochondrial morphology while reducing DNA damage</title><title>The FASEB journal</title><addtitle>FASEB J</addtitle><description>ABSTRACTMulticellular organisms balance oxygen delivery and toxicity by having oxygen pass through several barriers before cellular delivery. In human cell culture, these physiologic barriers are removed, exposing cells to higher oxygen levels. Human cells cultured in ambient air may appear normal, but this is difficult to assess without a comparison at physiologic oxygen. Here, we examined the effects of culturing human cells throughout the spectrum of oxygen availability on oxidative damage to macromolecules, viability, proliferation, the antioxidant and DNA damage responses, metabolism, and mitochondrial fusion and morphology. We surveyed 4 human cell lines cultured for 3 d at 7 oxygen conditions between 1 and 21% O2. We show that oxygen levels and cellular benefit are not inversely proportional, but the benefit peaks within the physioxic range. Normoxic cells are in a perpetual state of responding to damaged macromolecules and mitochondrial networks relative to physioxic cells, which could compromise an investigation. These data contribute to the concept of an optimal oxygen availability for cell culture in the physioxic range where the oxygen is not too high to reduce oxidative damage, and not too low for efficient oxidative metabolism, but just right: the Goldiloxygen zone.—Timpano, S., Guild, B. D., Specker, E. J., Melanson, G., Medeiros, P. J., Sproul, S. L. J., Uniacke, J. Physioxic human cell culture improves viability, metabolism, and mitochondrial morphology while reducing DNA damage. FASEB J. 33, 5716–5728 (2019). www.fasebj.org</description><subject>Antioxidants - metabolism</subject><subject>Cell Line, Tumor</subject><subject>Cell Proliferation - genetics</subject><subject>Cell Survival - genetics</subject><subject>Cells, Cultured</subject><subject>DNA Damage - genetics</subject><subject>Humans</subject><subject>Mitochondria - genetics</subject><subject>Mitochondria - metabolism</subject><subject>Oxidation-Reduction</subject><subject>oxidative stress</subject><subject>Oxidative Stress - genetics</subject><subject>oxygen</subject><subject>Oxygen - metabolism</subject><subject>physioxia</subject><issn>0892-6638</issn><issn>1530-6860</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp9kLlOAzEURS0EgrCUtMgfkIHnWRyPqMISFiFAQD_ymnFkx5GdAebvCQpbRfNec3SkexA6JHBMoKYnZnacA2GQ56P6aQMNSFVARhmFTTQAVucZpQXbQbspzQCAAKHbaKcAWtY1hQFKj22fbHi3Ered53MstXNYdm7ZRY2tX8TwqhN-tVxYZ5f9EHu95CI4m_wQ87nC3i6DbMNcRcsd9iEu2uDCtMdvrXUaR606aedTfHE_xop7PtX7aMtwl_TB199DL5PLl_Pr7O7h6uZ8fJfJoqyeMlYzo6WqcgmVIEzpkjNJRpALLpkQzJQCKi4NqfJCyIKPqDGqpGokiVjdYg9la62MIaWoTbOI1vPYNwSaz3aNmTW_7Vb80ZpfdMJr9UN_x1oBp2vgbTWs_9_WTJ7P8sntH_0HH21-4Q</recordid><startdate>201904</startdate><enddate>201904</enddate><creator>Timpano, Sara</creator><creator>Guild, Brianna D.</creator><creator>Specker, Erin J.</creator><creator>Melanson, Gaelan</creator><creator>Medeiros, Philip J.</creator><creator>Sproul, Shannon L. J.</creator><creator>Uniacke, James</creator><general>Federation of American Societies for Experimental Biology</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>201904</creationdate><title>Physioxic human cell culture improves viability, metabolism, and mitochondrial morphology while reducing DNA damage</title><author>Timpano, Sara ; Guild, Brianna D. ; Specker, Erin J. ; Melanson, Gaelan ; Medeiros, Philip J. ; Sproul, Shannon L. J. ; Uniacke, James</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c345R-898fecd52c05b18de4a8c1702bac8bb8f4b05acf1523bc3a76ffd46d7c1b6d73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Antioxidants - metabolism</topic><topic>Cell Line, Tumor</topic><topic>Cell Proliferation - genetics</topic><topic>Cell Survival - genetics</topic><topic>Cells, Cultured</topic><topic>DNA Damage - genetics</topic><topic>Humans</topic><topic>Mitochondria - genetics</topic><topic>Mitochondria - metabolism</topic><topic>Oxidation-Reduction</topic><topic>oxidative stress</topic><topic>Oxidative Stress - genetics</topic><topic>oxygen</topic><topic>Oxygen - metabolism</topic><topic>physioxia</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Timpano, Sara</creatorcontrib><creatorcontrib>Guild, Brianna D.</creatorcontrib><creatorcontrib>Specker, Erin J.</creatorcontrib><creatorcontrib>Melanson, Gaelan</creatorcontrib><creatorcontrib>Medeiros, Philip J.</creatorcontrib><creatorcontrib>Sproul, Shannon L. J.</creatorcontrib><creatorcontrib>Uniacke, James</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><jtitle>The FASEB journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Timpano, Sara</au><au>Guild, Brianna D.</au><au>Specker, Erin J.</au><au>Melanson, Gaelan</au><au>Medeiros, Philip J.</au><au>Sproul, Shannon L. J.</au><au>Uniacke, James</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Physioxic human cell culture improves viability, metabolism, and mitochondrial morphology while reducing DNA damage</atitle><jtitle>The FASEB journal</jtitle><addtitle>FASEB J</addtitle><date>2019-04</date><risdate>2019</risdate><volume>33</volume><issue>4</issue><spage>5716</spage><epage>5728</epage><pages>5716-5728</pages><issn>0892-6638</issn><eissn>1530-6860</eissn><abstract>ABSTRACTMulticellular organisms balance oxygen delivery and toxicity by having oxygen pass through several barriers before cellular delivery. In human cell culture, these physiologic barriers are removed, exposing cells to higher oxygen levels. Human cells cultured in ambient air may appear normal, but this is difficult to assess without a comparison at physiologic oxygen. Here, we examined the effects of culturing human cells throughout the spectrum of oxygen availability on oxidative damage to macromolecules, viability, proliferation, the antioxidant and DNA damage responses, metabolism, and mitochondrial fusion and morphology. We surveyed 4 human cell lines cultured for 3 d at 7 oxygen conditions between 1 and 21% O2. We show that oxygen levels and cellular benefit are not inversely proportional, but the benefit peaks within the physioxic range. Normoxic cells are in a perpetual state of responding to damaged macromolecules and mitochondrial networks relative to physioxic cells, which could compromise an investigation. These data contribute to the concept of an optimal oxygen availability for cell culture in the physioxic range where the oxygen is not too high to reduce oxidative damage, and not too low for efficient oxidative metabolism, but just right: the Goldiloxygen zone.—Timpano, S., Guild, B. D., Specker, E. J., Melanson, G., Medeiros, P. J., Sproul, S. L. J., Uniacke, J. Physioxic human cell culture improves viability, metabolism, and mitochondrial morphology while reducing DNA damage. FASEB J. 33, 5716–5728 (2019). www.fasebj.org</abstract><cop>United States</cop><pub>Federation of American Societies for Experimental Biology</pub><pmid>30649960</pmid><doi>10.1096/fj.201802279R</doi><tpages>13</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0892-6638 |
ispartof | The FASEB journal, 2019-04, Vol.33 (4), p.5716-5728 |
issn | 0892-6638 1530-6860 |
language | eng |
recordid | cdi_crossref_primary_10_1096_fj_201802279R |
source | Wiley |
subjects | Antioxidants - metabolism Cell Line, Tumor Cell Proliferation - genetics Cell Survival - genetics Cells, Cultured DNA Damage - genetics Humans Mitochondria - genetics Mitochondria - metabolism Oxidation-Reduction oxidative stress Oxidative Stress - genetics oxygen Oxygen - metabolism physioxia |
title | Physioxic human cell culture improves viability, metabolism, and mitochondrial morphology while reducing DNA damage |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-11-05T06%3A37%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-wiley_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Physioxic%20human%20cell%20culture%20improves%20viability,%20metabolism,%20and%20mitochondrial%20morphology%20while%20reducing%20DNA%20damage&rft.jtitle=The%20FASEB%20journal&rft.au=Timpano,%20Sara&rft.date=2019-04&rft.volume=33&rft.issue=4&rft.spage=5716&rft.epage=5728&rft.pages=5716-5728&rft.issn=0892-6638&rft.eissn=1530-6860&rft_id=info:doi/10.1096/fj.201802279R&rft_dat=%3Cwiley_cross%3EFSB2FJ201802279R%3C/wiley_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c345R-898fecd52c05b18de4a8c1702bac8bb8f4b05acf1523bc3a76ffd46d7c1b6d73%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/30649960&rfr_iscdi=true |