Loading…

Physioxic human cell culture improves viability, metabolism, and mitochondrial morphology while reducing DNA damage

ABSTRACTMulticellular organisms balance oxygen delivery and toxicity by having oxygen pass through several barriers before cellular delivery. In human cell culture, these physiologic barriers are removed, exposing cells to higher oxygen levels. Human cells cultured in ambient air may appear normal,...

Full description

Saved in:
Bibliographic Details
Published in:The FASEB journal 2019-04, Vol.33 (4), p.5716-5728
Main Authors: Timpano, Sara, Guild, Brianna D., Specker, Erin J., Melanson, Gaelan, Medeiros, Philip J., Sproul, Shannon L. J., Uniacke, James
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c345R-898fecd52c05b18de4a8c1702bac8bb8f4b05acf1523bc3a76ffd46d7c1b6d73
cites cdi_FETCH-LOGICAL-c345R-898fecd52c05b18de4a8c1702bac8bb8f4b05acf1523bc3a76ffd46d7c1b6d73
container_end_page 5728
container_issue 4
container_start_page 5716
container_title The FASEB journal
container_volume 33
creator Timpano, Sara
Guild, Brianna D.
Specker, Erin J.
Melanson, Gaelan
Medeiros, Philip J.
Sproul, Shannon L. J.
Uniacke, James
description ABSTRACTMulticellular organisms balance oxygen delivery and toxicity by having oxygen pass through several barriers before cellular delivery. In human cell culture, these physiologic barriers are removed, exposing cells to higher oxygen levels. Human cells cultured in ambient air may appear normal, but this is difficult to assess without a comparison at physiologic oxygen. Here, we examined the effects of culturing human cells throughout the spectrum of oxygen availability on oxidative damage to macromolecules, viability, proliferation, the antioxidant and DNA damage responses, metabolism, and mitochondrial fusion and morphology. We surveyed 4 human cell lines cultured for 3 d at 7 oxygen conditions between 1 and 21% O2. We show that oxygen levels and cellular benefit are not inversely proportional, but the benefit peaks within the physioxic range. Normoxic cells are in a perpetual state of responding to damaged macromolecules and mitochondrial networks relative to physioxic cells, which could compromise an investigation. These data contribute to the concept of an optimal oxygen availability for cell culture in the physioxic range where the oxygen is not too high to reduce oxidative damage, and not too low for efficient oxidative metabolism, but just right: the Goldiloxygen zone.—Timpano, S., Guild, B. D., Specker, E. J., Melanson, G., Medeiros, P. J., Sproul, S. L. J., Uniacke, J. Physioxic human cell culture improves viability, metabolism, and mitochondrial morphology while reducing DNA damage. FASEB J. 33, 5716–5728 (2019). www.fasebj.org
doi_str_mv 10.1096/fj.201802279R
format article
fullrecord <record><control><sourceid>wiley_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1096_fj_201802279R</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>FSB2FJ201802279R</sourcerecordid><originalsourceid>FETCH-LOGICAL-c345R-898fecd52c05b18de4a8c1702bac8bb8f4b05acf1523bc3a76ffd46d7c1b6d73</originalsourceid><addsrcrecordid>eNp9kLlOAzEURS0EgrCUtMgfkIHnWRyPqMISFiFAQD_ymnFkx5GdAebvCQpbRfNec3SkexA6JHBMoKYnZnacA2GQ56P6aQMNSFVARhmFTTQAVucZpQXbQbspzQCAAKHbaKcAWtY1hQFKj22fbHi3Ered53MstXNYdm7ZRY2tX8TwqhN-tVxYZ5f9EHu95CI4m_wQ87nC3i6DbMNcRcsd9iEu2uDCtMdvrXUaR606aedTfHE_xop7PtX7aMtwl_TB199DL5PLl_Pr7O7h6uZ8fJfJoqyeMlYzo6WqcgmVIEzpkjNJRpALLpkQzJQCKi4NqfJCyIKPqDGqpGokiVjdYg9la62MIaWoTbOI1vPYNwSaz3aNmTW_7Vb80ZpfdMJr9UN_x1oBp2vgbTWs_9_WTJ7P8sntH_0HH21-4Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Physioxic human cell culture improves viability, metabolism, and mitochondrial morphology while reducing DNA damage</title><source>Wiley</source><creator>Timpano, Sara ; Guild, Brianna D. ; Specker, Erin J. ; Melanson, Gaelan ; Medeiros, Philip J. ; Sproul, Shannon L. J. ; Uniacke, James</creator><creatorcontrib>Timpano, Sara ; Guild, Brianna D. ; Specker, Erin J. ; Melanson, Gaelan ; Medeiros, Philip J. ; Sproul, Shannon L. J. ; Uniacke, James</creatorcontrib><description>ABSTRACTMulticellular organisms balance oxygen delivery and toxicity by having oxygen pass through several barriers before cellular delivery. In human cell culture, these physiologic barriers are removed, exposing cells to higher oxygen levels. Human cells cultured in ambient air may appear normal, but this is difficult to assess without a comparison at physiologic oxygen. Here, we examined the effects of culturing human cells throughout the spectrum of oxygen availability on oxidative damage to macromolecules, viability, proliferation, the antioxidant and DNA damage responses, metabolism, and mitochondrial fusion and morphology. We surveyed 4 human cell lines cultured for 3 d at 7 oxygen conditions between 1 and 21% O2. We show that oxygen levels and cellular benefit are not inversely proportional, but the benefit peaks within the physioxic range. Normoxic cells are in a perpetual state of responding to damaged macromolecules and mitochondrial networks relative to physioxic cells, which could compromise an investigation. These data contribute to the concept of an optimal oxygen availability for cell culture in the physioxic range where the oxygen is not too high to reduce oxidative damage, and not too low for efficient oxidative metabolism, but just right: the Goldiloxygen zone.—Timpano, S., Guild, B. D., Specker, E. J., Melanson, G., Medeiros, P. J., Sproul, S. L. J., Uniacke, J. Physioxic human cell culture improves viability, metabolism, and mitochondrial morphology while reducing DNA damage. FASEB J. 33, 5716–5728 (2019). www.fasebj.org</description><identifier>ISSN: 0892-6638</identifier><identifier>EISSN: 1530-6860</identifier><identifier>DOI: 10.1096/fj.201802279R</identifier><identifier>PMID: 30649960</identifier><language>eng</language><publisher>United States: Federation of American Societies for Experimental Biology</publisher><subject>Antioxidants - metabolism ; Cell Line, Tumor ; Cell Proliferation - genetics ; Cell Survival - genetics ; Cells, Cultured ; DNA Damage - genetics ; Humans ; Mitochondria - genetics ; Mitochondria - metabolism ; Oxidation-Reduction ; oxidative stress ; Oxidative Stress - genetics ; oxygen ; Oxygen - metabolism ; physioxia</subject><ispartof>The FASEB journal, 2019-04, Vol.33 (4), p.5716-5728</ispartof><rights>FASEB</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c345R-898fecd52c05b18de4a8c1702bac8bb8f4b05acf1523bc3a76ffd46d7c1b6d73</citedby><cites>FETCH-LOGICAL-c345R-898fecd52c05b18de4a8c1702bac8bb8f4b05acf1523bc3a76ffd46d7c1b6d73</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>315,783,787,27938,27939</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30649960$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Timpano, Sara</creatorcontrib><creatorcontrib>Guild, Brianna D.</creatorcontrib><creatorcontrib>Specker, Erin J.</creatorcontrib><creatorcontrib>Melanson, Gaelan</creatorcontrib><creatorcontrib>Medeiros, Philip J.</creatorcontrib><creatorcontrib>Sproul, Shannon L. J.</creatorcontrib><creatorcontrib>Uniacke, James</creatorcontrib><title>Physioxic human cell culture improves viability, metabolism, and mitochondrial morphology while reducing DNA damage</title><title>The FASEB journal</title><addtitle>FASEB J</addtitle><description>ABSTRACTMulticellular organisms balance oxygen delivery and toxicity by having oxygen pass through several barriers before cellular delivery. In human cell culture, these physiologic barriers are removed, exposing cells to higher oxygen levels. Human cells cultured in ambient air may appear normal, but this is difficult to assess without a comparison at physiologic oxygen. Here, we examined the effects of culturing human cells throughout the spectrum of oxygen availability on oxidative damage to macromolecules, viability, proliferation, the antioxidant and DNA damage responses, metabolism, and mitochondrial fusion and morphology. We surveyed 4 human cell lines cultured for 3 d at 7 oxygen conditions between 1 and 21% O2. We show that oxygen levels and cellular benefit are not inversely proportional, but the benefit peaks within the physioxic range. Normoxic cells are in a perpetual state of responding to damaged macromolecules and mitochondrial networks relative to physioxic cells, which could compromise an investigation. These data contribute to the concept of an optimal oxygen availability for cell culture in the physioxic range where the oxygen is not too high to reduce oxidative damage, and not too low for efficient oxidative metabolism, but just right: the Goldiloxygen zone.—Timpano, S., Guild, B. D., Specker, E. J., Melanson, G., Medeiros, P. J., Sproul, S. L. J., Uniacke, J. Physioxic human cell culture improves viability, metabolism, and mitochondrial morphology while reducing DNA damage. FASEB J. 33, 5716–5728 (2019). www.fasebj.org</description><subject>Antioxidants - metabolism</subject><subject>Cell Line, Tumor</subject><subject>Cell Proliferation - genetics</subject><subject>Cell Survival - genetics</subject><subject>Cells, Cultured</subject><subject>DNA Damage - genetics</subject><subject>Humans</subject><subject>Mitochondria - genetics</subject><subject>Mitochondria - metabolism</subject><subject>Oxidation-Reduction</subject><subject>oxidative stress</subject><subject>Oxidative Stress - genetics</subject><subject>oxygen</subject><subject>Oxygen - metabolism</subject><subject>physioxia</subject><issn>0892-6638</issn><issn>1530-6860</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp9kLlOAzEURS0EgrCUtMgfkIHnWRyPqMISFiFAQD_ymnFkx5GdAebvCQpbRfNec3SkexA6JHBMoKYnZnacA2GQ56P6aQMNSFVARhmFTTQAVucZpQXbQbspzQCAAKHbaKcAWtY1hQFKj22fbHi3Ered53MstXNYdm7ZRY2tX8TwqhN-tVxYZ5f9EHu95CI4m_wQ87nC3i6DbMNcRcsd9iEu2uDCtMdvrXUaR606aedTfHE_xop7PtX7aMtwl_TB199DL5PLl_Pr7O7h6uZ8fJfJoqyeMlYzo6WqcgmVIEzpkjNJRpALLpkQzJQCKi4NqfJCyIKPqDGqpGokiVjdYg9la62MIaWoTbOI1vPYNwSaz3aNmTW_7Vb80ZpfdMJr9UN_x1oBp2vgbTWs_9_WTJ7P8sntH_0HH21-4Q</recordid><startdate>201904</startdate><enddate>201904</enddate><creator>Timpano, Sara</creator><creator>Guild, Brianna D.</creator><creator>Specker, Erin J.</creator><creator>Melanson, Gaelan</creator><creator>Medeiros, Philip J.</creator><creator>Sproul, Shannon L. J.</creator><creator>Uniacke, James</creator><general>Federation of American Societies for Experimental Biology</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>201904</creationdate><title>Physioxic human cell culture improves viability, metabolism, and mitochondrial morphology while reducing DNA damage</title><author>Timpano, Sara ; Guild, Brianna D. ; Specker, Erin J. ; Melanson, Gaelan ; Medeiros, Philip J. ; Sproul, Shannon L. J. ; Uniacke, James</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c345R-898fecd52c05b18de4a8c1702bac8bb8f4b05acf1523bc3a76ffd46d7c1b6d73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Antioxidants - metabolism</topic><topic>Cell Line, Tumor</topic><topic>Cell Proliferation - genetics</topic><topic>Cell Survival - genetics</topic><topic>Cells, Cultured</topic><topic>DNA Damage - genetics</topic><topic>Humans</topic><topic>Mitochondria - genetics</topic><topic>Mitochondria - metabolism</topic><topic>Oxidation-Reduction</topic><topic>oxidative stress</topic><topic>Oxidative Stress - genetics</topic><topic>oxygen</topic><topic>Oxygen - metabolism</topic><topic>physioxia</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Timpano, Sara</creatorcontrib><creatorcontrib>Guild, Brianna D.</creatorcontrib><creatorcontrib>Specker, Erin J.</creatorcontrib><creatorcontrib>Melanson, Gaelan</creatorcontrib><creatorcontrib>Medeiros, Philip J.</creatorcontrib><creatorcontrib>Sproul, Shannon L. J.</creatorcontrib><creatorcontrib>Uniacke, James</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><jtitle>The FASEB journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Timpano, Sara</au><au>Guild, Brianna D.</au><au>Specker, Erin J.</au><au>Melanson, Gaelan</au><au>Medeiros, Philip J.</au><au>Sproul, Shannon L. J.</au><au>Uniacke, James</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Physioxic human cell culture improves viability, metabolism, and mitochondrial morphology while reducing DNA damage</atitle><jtitle>The FASEB journal</jtitle><addtitle>FASEB J</addtitle><date>2019-04</date><risdate>2019</risdate><volume>33</volume><issue>4</issue><spage>5716</spage><epage>5728</epage><pages>5716-5728</pages><issn>0892-6638</issn><eissn>1530-6860</eissn><abstract>ABSTRACTMulticellular organisms balance oxygen delivery and toxicity by having oxygen pass through several barriers before cellular delivery. In human cell culture, these physiologic barriers are removed, exposing cells to higher oxygen levels. Human cells cultured in ambient air may appear normal, but this is difficult to assess without a comparison at physiologic oxygen. Here, we examined the effects of culturing human cells throughout the spectrum of oxygen availability on oxidative damage to macromolecules, viability, proliferation, the antioxidant and DNA damage responses, metabolism, and mitochondrial fusion and morphology. We surveyed 4 human cell lines cultured for 3 d at 7 oxygen conditions between 1 and 21% O2. We show that oxygen levels and cellular benefit are not inversely proportional, but the benefit peaks within the physioxic range. Normoxic cells are in a perpetual state of responding to damaged macromolecules and mitochondrial networks relative to physioxic cells, which could compromise an investigation. These data contribute to the concept of an optimal oxygen availability for cell culture in the physioxic range where the oxygen is not too high to reduce oxidative damage, and not too low for efficient oxidative metabolism, but just right: the Goldiloxygen zone.—Timpano, S., Guild, B. D., Specker, E. J., Melanson, G., Medeiros, P. J., Sproul, S. L. J., Uniacke, J. Physioxic human cell culture improves viability, metabolism, and mitochondrial morphology while reducing DNA damage. FASEB J. 33, 5716–5728 (2019). www.fasebj.org</abstract><cop>United States</cop><pub>Federation of American Societies for Experimental Biology</pub><pmid>30649960</pmid><doi>10.1096/fj.201802279R</doi><tpages>13</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0892-6638
ispartof The FASEB journal, 2019-04, Vol.33 (4), p.5716-5728
issn 0892-6638
1530-6860
language eng
recordid cdi_crossref_primary_10_1096_fj_201802279R
source Wiley
subjects Antioxidants - metabolism
Cell Line, Tumor
Cell Proliferation - genetics
Cell Survival - genetics
Cells, Cultured
DNA Damage - genetics
Humans
Mitochondria - genetics
Mitochondria - metabolism
Oxidation-Reduction
oxidative stress
Oxidative Stress - genetics
oxygen
Oxygen - metabolism
physioxia
title Physioxic human cell culture improves viability, metabolism, and mitochondrial morphology while reducing DNA damage
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-11-05T06%3A37%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-wiley_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Physioxic%20human%20cell%20culture%20improves%20viability,%20metabolism,%20and%20mitochondrial%20morphology%20while%20reducing%20DNA%20damage&rft.jtitle=The%20FASEB%20journal&rft.au=Timpano,%20Sara&rft.date=2019-04&rft.volume=33&rft.issue=4&rft.spage=5716&rft.epage=5728&rft.pages=5716-5728&rft.issn=0892-6638&rft.eissn=1530-6860&rft_id=info:doi/10.1096/fj.201802279R&rft_dat=%3Cwiley_cross%3EFSB2FJ201802279R%3C/wiley_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c345R-898fecd52c05b18de4a8c1702bac8bb8f4b05acf1523bc3a76ffd46d7c1b6d73%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/30649960&rfr_iscdi=true