Loading…

Simulating biosignatures from pre-oxygen photosynthesizing life on TRAPPIST-1e

ABSTRACT In order to assess observational evidence for potential atmospheric biosignatures on exoplanets, it will be essential to test whether spectral fingerprints from multiple gases can be explained by abiotic or biotic-only processes. Here, we develop and apply a coupled 1D atmosphere-ocean-ecos...

Full description

Saved in:
Bibliographic Details
Published in:Monthly notices of the Royal Astronomical Society 2024-05, Vol.531 (1), p.468-494
Main Authors: Eager-Nash, Jake K, Daines, Stuart J, McDermott, James W, Andrews, Peter, Grain, Lucy A, Bishop, James, Rogers, Aaron A, Smith, Jack W G, Khalek, Chadiga, Boxer, Thomas J, Mak, Mei Ting, Ridgway, Robert J, Hébrard, Eric, Lambert, F Hugo, Lenton, Timothy M, Mayne, Nathan J
Format: Article
Language:English
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c194t-9eb4931c492fb0c134e9a117455c878bcdbf70d2bf1d16f28d0ff49ca586fb623
container_end_page 494
container_issue 1
container_start_page 468
container_title Monthly notices of the Royal Astronomical Society
container_volume 531
creator Eager-Nash, Jake K
Daines, Stuart J
McDermott, James W
Andrews, Peter
Grain, Lucy A
Bishop, James
Rogers, Aaron A
Smith, Jack W G
Khalek, Chadiga
Boxer, Thomas J
Mak, Mei Ting
Ridgway, Robert J
Hébrard, Eric
Lambert, F Hugo
Lenton, Timothy M
Mayne, Nathan J
description ABSTRACT In order to assess observational evidence for potential atmospheric biosignatures on exoplanets, it will be essential to test whether spectral fingerprints from multiple gases can be explained by abiotic or biotic-only processes. Here, we develop and apply a coupled 1D atmosphere-ocean-ecosystem model to understand how primitive biospheres, which exploit abiotic sources of H$_2$, CO, and O$_2$, could influence the atmospheric composition of rocky terrestrial exoplanets. We apply this to the Earth at 3.8 Ga and to TRAPPIST-1e. We focus on metabolisms that evolved before the evolution of oxygenic photosynthesis, which consume H$_2$ and CO and produce potentially detectable levels of CH$_4$. O$_2$-consuming metabolisms are also considered for TRAPPIST-1e, as abiotic O$_2$ production is predicted on M-dwarf orbiting planets. We show that these biospheres can lead to high levels of surface O$_2$ (approximately 1–5 per cent) as a result of CO consumption, which could allow high O$_2$ scenarios, by removing the main loss mechanisms of atomic oxygen. Increasing stratospheric temperatures, which increases atmospheric OH can reduce the likelihood of such a state forming. O$_2$-consuming metabolisms could also lower O$_2$ levels to around 10 ppm and support a productive biosphere at low reductant inputs. Using predicted transmission spectral features from CH$_4$, CO, O$_2$/O$_3$, and CO$_2$ across the hypothesis space for tectonic reductant input, we show that biotically produced CH$_4$ may only be detectable at high reductant inputs. CO is also likely to be a dominant feature in transmission spectra for planets orbiting M-dwarfs, which could reduce the confidence in any potential biosignature observations linked to these biospheres.
doi_str_mv 10.1093/mnras/stae1142
format article
fullrecord <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_1093_mnras_stae1142</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1093_mnras_stae1142</sourcerecordid><originalsourceid>FETCH-LOGICAL-c194t-9eb4931c492fb0c134e9a117455c878bcdbf70d2bf1d16f28d0ff49ca586fb623</originalsourceid><addsrcrecordid>eNo10M1LwzAcxvEgCtbp1XP_gWz5JWnaHMfwZTB0uHkuSZp0kbYpSQfOv17my-m5fHkOH4TugcyBSLboh6jSIk3KAnB6gTJgosBUCnGJMkJYgasS4BrdpPRBCOGMigy97Hx_7NTkhzbXPiTfDmo6RptyF0Ofj9Hi8Hlq7ZCPhzCFdBqmg03-69x33tk8DPn-bbndrnd7DPYWXTnVJXv3tzP0_viwXz3jzevTerXcYAOST1hazSUDwyV1mhhg3EoFUPKiMFVZadNoV5KGagcNCEerhjjHpVFFJZwWlM3Q_PfXxJBStK4eo-9VPNVA6rNG_aNR_2uwb2obVqQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Simulating biosignatures from pre-oxygen photosynthesizing life on TRAPPIST-1e</title><source>Oxford Journals - Connect here FIRST to enable access</source><source>Free E-Journal (出版社公開部分のみ)</source><creator>Eager-Nash, Jake K ; Daines, Stuart J ; McDermott, James W ; Andrews, Peter ; Grain, Lucy A ; Bishop, James ; Rogers, Aaron A ; Smith, Jack W G ; Khalek, Chadiga ; Boxer, Thomas J ; Mak, Mei Ting ; Ridgway, Robert J ; Hébrard, Eric ; Lambert, F Hugo ; Lenton, Timothy M ; Mayne, Nathan J</creator><creatorcontrib>Eager-Nash, Jake K ; Daines, Stuart J ; McDermott, James W ; Andrews, Peter ; Grain, Lucy A ; Bishop, James ; Rogers, Aaron A ; Smith, Jack W G ; Khalek, Chadiga ; Boxer, Thomas J ; Mak, Mei Ting ; Ridgway, Robert J ; Hébrard, Eric ; Lambert, F Hugo ; Lenton, Timothy M ; Mayne, Nathan J</creatorcontrib><description>ABSTRACT In order to assess observational evidence for potential atmospheric biosignatures on exoplanets, it will be essential to test whether spectral fingerprints from multiple gases can be explained by abiotic or biotic-only processes. Here, we develop and apply a coupled 1D atmosphere-ocean-ecosystem model to understand how primitive biospheres, which exploit abiotic sources of H$_2$, CO, and O$_2$, could influence the atmospheric composition of rocky terrestrial exoplanets. We apply this to the Earth at 3.8 Ga and to TRAPPIST-1e. We focus on metabolisms that evolved before the evolution of oxygenic photosynthesis, which consume H$_2$ and CO and produce potentially detectable levels of CH$_4$. O$_2$-consuming metabolisms are also considered for TRAPPIST-1e, as abiotic O$_2$ production is predicted on M-dwarf orbiting planets. We show that these biospheres can lead to high levels of surface O$_2$ (approximately 1–5 per cent) as a result of CO consumption, which could allow high O$_2$ scenarios, by removing the main loss mechanisms of atomic oxygen. Increasing stratospheric temperatures, which increases atmospheric OH can reduce the likelihood of such a state forming. O$_2$-consuming metabolisms could also lower O$_2$ levels to around 10 ppm and support a productive biosphere at low reductant inputs. Using predicted transmission spectral features from CH$_4$, CO, O$_2$/O$_3$, and CO$_2$ across the hypothesis space for tectonic reductant input, we show that biotically produced CH$_4$ may only be detectable at high reductant inputs. CO is also likely to be a dominant feature in transmission spectra for planets orbiting M-dwarfs, which could reduce the confidence in any potential biosignature observations linked to these biospheres.</description><identifier>ISSN: 0035-8711</identifier><identifier>EISSN: 1365-2966</identifier><identifier>DOI: 10.1093/mnras/stae1142</identifier><language>eng</language><ispartof>Monthly notices of the Royal Astronomical Society, 2024-05, Vol.531 (1), p.468-494</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c194t-9eb4931c492fb0c134e9a117455c878bcdbf70d2bf1d16f28d0ff49ca586fb623</cites><orcidid>0000-0001-5534-0561 ; 0000-0003-0770-7271 ; 0000-0001-5460-8159 ; 0000-0002-1624-3360 ; 0000-0001-6707-4563</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>315,786,790,27957,27958</link.rule.ids></links><search><creatorcontrib>Eager-Nash, Jake K</creatorcontrib><creatorcontrib>Daines, Stuart J</creatorcontrib><creatorcontrib>McDermott, James W</creatorcontrib><creatorcontrib>Andrews, Peter</creatorcontrib><creatorcontrib>Grain, Lucy A</creatorcontrib><creatorcontrib>Bishop, James</creatorcontrib><creatorcontrib>Rogers, Aaron A</creatorcontrib><creatorcontrib>Smith, Jack W G</creatorcontrib><creatorcontrib>Khalek, Chadiga</creatorcontrib><creatorcontrib>Boxer, Thomas J</creatorcontrib><creatorcontrib>Mak, Mei Ting</creatorcontrib><creatorcontrib>Ridgway, Robert J</creatorcontrib><creatorcontrib>Hébrard, Eric</creatorcontrib><creatorcontrib>Lambert, F Hugo</creatorcontrib><creatorcontrib>Lenton, Timothy M</creatorcontrib><creatorcontrib>Mayne, Nathan J</creatorcontrib><title>Simulating biosignatures from pre-oxygen photosynthesizing life on TRAPPIST-1e</title><title>Monthly notices of the Royal Astronomical Society</title><description>ABSTRACT In order to assess observational evidence for potential atmospheric biosignatures on exoplanets, it will be essential to test whether spectral fingerprints from multiple gases can be explained by abiotic or biotic-only processes. Here, we develop and apply a coupled 1D atmosphere-ocean-ecosystem model to understand how primitive biospheres, which exploit abiotic sources of H$_2$, CO, and O$_2$, could influence the atmospheric composition of rocky terrestrial exoplanets. We apply this to the Earth at 3.8 Ga and to TRAPPIST-1e. We focus on metabolisms that evolved before the evolution of oxygenic photosynthesis, which consume H$_2$ and CO and produce potentially detectable levels of CH$_4$. O$_2$-consuming metabolisms are also considered for TRAPPIST-1e, as abiotic O$_2$ production is predicted on M-dwarf orbiting planets. We show that these biospheres can lead to high levels of surface O$_2$ (approximately 1–5 per cent) as a result of CO consumption, which could allow high O$_2$ scenarios, by removing the main loss mechanisms of atomic oxygen. Increasing stratospheric temperatures, which increases atmospheric OH can reduce the likelihood of such a state forming. O$_2$-consuming metabolisms could also lower O$_2$ levels to around 10 ppm and support a productive biosphere at low reductant inputs. Using predicted transmission spectral features from CH$_4$, CO, O$_2$/O$_3$, and CO$_2$ across the hypothesis space for tectonic reductant input, we show that biotically produced CH$_4$ may only be detectable at high reductant inputs. CO is also likely to be a dominant feature in transmission spectra for planets orbiting M-dwarfs, which could reduce the confidence in any potential biosignature observations linked to these biospheres.</description><issn>0035-8711</issn><issn>1365-2966</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNo10M1LwzAcxvEgCtbp1XP_gWz5JWnaHMfwZTB0uHkuSZp0kbYpSQfOv17my-m5fHkOH4TugcyBSLboh6jSIk3KAnB6gTJgosBUCnGJMkJYgasS4BrdpPRBCOGMigy97Hx_7NTkhzbXPiTfDmo6RptyF0Ofj9Hi8Hlq7ZCPhzCFdBqmg03-69x33tk8DPn-bbndrnd7DPYWXTnVJXv3tzP0_viwXz3jzevTerXcYAOST1hazSUDwyV1mhhg3EoFUPKiMFVZadNoV5KGagcNCEerhjjHpVFFJZwWlM3Q_PfXxJBStK4eo-9VPNVA6rNG_aNR_2uwb2obVqQ</recordid><startdate>20240513</startdate><enddate>20240513</enddate><creator>Eager-Nash, Jake K</creator><creator>Daines, Stuart J</creator><creator>McDermott, James W</creator><creator>Andrews, Peter</creator><creator>Grain, Lucy A</creator><creator>Bishop, James</creator><creator>Rogers, Aaron A</creator><creator>Smith, Jack W G</creator><creator>Khalek, Chadiga</creator><creator>Boxer, Thomas J</creator><creator>Mak, Mei Ting</creator><creator>Ridgway, Robert J</creator><creator>Hébrard, Eric</creator><creator>Lambert, F Hugo</creator><creator>Lenton, Timothy M</creator><creator>Mayne, Nathan J</creator><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0001-5534-0561</orcidid><orcidid>https://orcid.org/0000-0003-0770-7271</orcidid><orcidid>https://orcid.org/0000-0001-5460-8159</orcidid><orcidid>https://orcid.org/0000-0002-1624-3360</orcidid><orcidid>https://orcid.org/0000-0001-6707-4563</orcidid></search><sort><creationdate>20240513</creationdate><title>Simulating biosignatures from pre-oxygen photosynthesizing life on TRAPPIST-1e</title><author>Eager-Nash, Jake K ; Daines, Stuart J ; McDermott, James W ; Andrews, Peter ; Grain, Lucy A ; Bishop, James ; Rogers, Aaron A ; Smith, Jack W G ; Khalek, Chadiga ; Boxer, Thomas J ; Mak, Mei Ting ; Ridgway, Robert J ; Hébrard, Eric ; Lambert, F Hugo ; Lenton, Timothy M ; Mayne, Nathan J</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c194t-9eb4931c492fb0c134e9a117455c878bcdbf70d2bf1d16f28d0ff49ca586fb623</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Eager-Nash, Jake K</creatorcontrib><creatorcontrib>Daines, Stuart J</creatorcontrib><creatorcontrib>McDermott, James W</creatorcontrib><creatorcontrib>Andrews, Peter</creatorcontrib><creatorcontrib>Grain, Lucy A</creatorcontrib><creatorcontrib>Bishop, James</creatorcontrib><creatorcontrib>Rogers, Aaron A</creatorcontrib><creatorcontrib>Smith, Jack W G</creatorcontrib><creatorcontrib>Khalek, Chadiga</creatorcontrib><creatorcontrib>Boxer, Thomas J</creatorcontrib><creatorcontrib>Mak, Mei Ting</creatorcontrib><creatorcontrib>Ridgway, Robert J</creatorcontrib><creatorcontrib>Hébrard, Eric</creatorcontrib><creatorcontrib>Lambert, F Hugo</creatorcontrib><creatorcontrib>Lenton, Timothy M</creatorcontrib><creatorcontrib>Mayne, Nathan J</creatorcontrib><collection>CrossRef</collection><jtitle>Monthly notices of the Royal Astronomical Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Eager-Nash, Jake K</au><au>Daines, Stuart J</au><au>McDermott, James W</au><au>Andrews, Peter</au><au>Grain, Lucy A</au><au>Bishop, James</au><au>Rogers, Aaron A</au><au>Smith, Jack W G</au><au>Khalek, Chadiga</au><au>Boxer, Thomas J</au><au>Mak, Mei Ting</au><au>Ridgway, Robert J</au><au>Hébrard, Eric</au><au>Lambert, F Hugo</au><au>Lenton, Timothy M</au><au>Mayne, Nathan J</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Simulating biosignatures from pre-oxygen photosynthesizing life on TRAPPIST-1e</atitle><jtitle>Monthly notices of the Royal Astronomical Society</jtitle><date>2024-05-13</date><risdate>2024</risdate><volume>531</volume><issue>1</issue><spage>468</spage><epage>494</epage><pages>468-494</pages><issn>0035-8711</issn><eissn>1365-2966</eissn><abstract>ABSTRACT In order to assess observational evidence for potential atmospheric biosignatures on exoplanets, it will be essential to test whether spectral fingerprints from multiple gases can be explained by abiotic or biotic-only processes. Here, we develop and apply a coupled 1D atmosphere-ocean-ecosystem model to understand how primitive biospheres, which exploit abiotic sources of H$_2$, CO, and O$_2$, could influence the atmospheric composition of rocky terrestrial exoplanets. We apply this to the Earth at 3.8 Ga and to TRAPPIST-1e. We focus on metabolisms that evolved before the evolution of oxygenic photosynthesis, which consume H$_2$ and CO and produce potentially detectable levels of CH$_4$. O$_2$-consuming metabolisms are also considered for TRAPPIST-1e, as abiotic O$_2$ production is predicted on M-dwarf orbiting planets. We show that these biospheres can lead to high levels of surface O$_2$ (approximately 1–5 per cent) as a result of CO consumption, which could allow high O$_2$ scenarios, by removing the main loss mechanisms of atomic oxygen. Increasing stratospheric temperatures, which increases atmospheric OH can reduce the likelihood of such a state forming. O$_2$-consuming metabolisms could also lower O$_2$ levels to around 10 ppm and support a productive biosphere at low reductant inputs. Using predicted transmission spectral features from CH$_4$, CO, O$_2$/O$_3$, and CO$_2$ across the hypothesis space for tectonic reductant input, we show that biotically produced CH$_4$ may only be detectable at high reductant inputs. CO is also likely to be a dominant feature in transmission spectra for planets orbiting M-dwarfs, which could reduce the confidence in any potential biosignature observations linked to these biospheres.</abstract><doi>10.1093/mnras/stae1142</doi><tpages>27</tpages><orcidid>https://orcid.org/0000-0001-5534-0561</orcidid><orcidid>https://orcid.org/0000-0003-0770-7271</orcidid><orcidid>https://orcid.org/0000-0001-5460-8159</orcidid><orcidid>https://orcid.org/0000-0002-1624-3360</orcidid><orcidid>https://orcid.org/0000-0001-6707-4563</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0035-8711
ispartof Monthly notices of the Royal Astronomical Society, 2024-05, Vol.531 (1), p.468-494
issn 0035-8711
1365-2966
language eng
recordid cdi_crossref_primary_10_1093_mnras_stae1142
source Oxford Journals - Connect here FIRST to enable access; Free E-Journal (出版社公開部分のみ)
title Simulating biosignatures from pre-oxygen photosynthesizing life on TRAPPIST-1e
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-09-22T02%3A39%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Simulating%20biosignatures%20from%20pre-oxygen%20photosynthesizing%20life%20on%20TRAPPIST-1e&rft.jtitle=Monthly%20notices%20of%20the%20Royal%20Astronomical%20Society&rft.au=Eager-Nash,%20Jake%20K&rft.date=2024-05-13&rft.volume=531&rft.issue=1&rft.spage=468&rft.epage=494&rft.pages=468-494&rft.issn=0035-8711&rft.eissn=1365-2966&rft_id=info:doi/10.1093/mnras/stae1142&rft_dat=%3Ccrossref%3E10_1093_mnras_stae1142%3C/crossref%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c194t-9eb4931c492fb0c134e9a117455c878bcdbf70d2bf1d16f28d0ff49ca586fb623%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true