Loading…

Anisotropic properties of two-dimensional (2D) tin dihalide (SnX2, X = Cl, Br, I) monolayer binary materials

This paper investigated the electronic properties and photoresponse of two-dimensional SnX (X = Cl, Br, I) monolayer binary materials using computational techniques. The calculated band structure and density of states indicate that these are large band gap semiconducting materials with an indirect b...

Full description

Saved in:
Bibliographic Details
Published in:Journal of physics. Condensed matter 2024-03, Vol.36 (11), p.115701
Main Authors: Kumar, Vipin, Jeon, Hwajun, Kumar, Pushpendra, Trung, Le Gia, Ahuja, Rajeev, Gwag, Jin Seog
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c405t-b1a0d12e1e96b2c5bce97ba782a18e8ab7f9f0c630fdabd378bee936a8d46b7e3
cites cdi_FETCH-LOGICAL-c405t-b1a0d12e1e96b2c5bce97ba782a18e8ab7f9f0c630fdabd378bee936a8d46b7e3
container_end_page
container_issue 11
container_start_page 115701
container_title Journal of physics. Condensed matter
container_volume 36
creator Kumar, Vipin
Jeon, Hwajun
Kumar, Pushpendra
Trung, Le Gia
Ahuja, Rajeev
Gwag, Jin Seog
description This paper investigated the electronic properties and photoresponse of two-dimensional SnX (X = Cl, Br, I) monolayer binary materials using computational techniques. The calculated band structure and density of states indicate that these are large band gap semiconducting materials with an indirect band gap. The studied chemical bonding mechanism shows the existence of the hybrid bonding of ionic and covalent bonds in these dihalide materials. The valence band (VB) and conduction band (CB) edge positions are also estimated, using the concept of electronegativity and band gap, to investigate the photocatalytic activity of SnX . Next, we investigated the polarization and energy-dependent dielectric and optical functions along the crystallographic axes of these materials in the linear response approach of the perturbing incident oscillating light field. These materials exhibit an anisotropic behavior of these functions, especially in the high-energy visible and low-energy ultraviolet (UV) regions. The absorption of incident light photons is very fast in SnI than SnBr and SnCl in the low-energy UV region. It demonstrates the higher absorption coefficient and optical conductivity in Snl . The obtained average static refractive index of SnCl is comparable to that of glass (1.5), showing its application as transparent material. The low reflection coefficient, less than 20%, makes them superior for antireflection coating materials in the infrared and visible regions. The prominent energy loss peaks show the existence of plasmon resonances in these materials. The most of losses occur in the UV region. The investigated electronic and photoresponse properties indicate that these Sn-based dihalide materials are excellent for electronic devices and optoelectronic applications. Also, the calculated VB and CB edge positions with respect to the normal hydrogen electrode show the favorable water-splitting capability of these materials.
doi_str_mv 10.1088/1361-648X/ad1138
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1088_1361_648X_ad1138</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2896810106</sourcerecordid><originalsourceid>FETCH-LOGICAL-c405t-b1a0d12e1e96b2c5bce97ba782a18e8ab7f9f0c630fdabd378bee936a8d46b7e3</originalsourceid><addsrcrecordid>eNp1kUFv1DAQhS0Eokvhzgn5xlbatHacOM6Bw7IFWqkShxa0t5EdT8BVEgc7UdV_j1cpizggWXqS9c2z5z1C3nJ2zplSF1xInslC7S-05VyoZ2R1vHpOVqwuRaZqVZyQVzHeM8YKJYqX5EQoJkqhxIp028FFPwU_uoaOSTBMDiP1LZ0efGZdj0N0ftAdXeeXZ3RyA7Xup-6cRbq-Hfb5hu7pB7rrNvRj2NDrM9r7wXf6EQM1btDhkfZ6wuB0F1-TF20SfPOkp-Tb5093u6vs5uuX6932JmsKVk6Z4ZpZniPHWpq8KU2DdWV0pXLNFSptqrZuWSMFa602VlTKINZCamULaSoUp2Sz-MYHHGcDY3B9-gh47eDSfd-CDz9gnqHM80qIhK8XPO3_a8Y4Qe9ig12nB_RzhFzVUnHGmUwoW9Am-BgDtkdvzuBQCRzyh0P-sFSSRt49uc-mR3sc-NNBAt4vgPMj3Ps5pLAjND0ICZynU1aMw2jbv3v9Q_735d-hR6F5</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2896810106</pqid></control><display><type>article</type><title>Anisotropic properties of two-dimensional (2D) tin dihalide (SnX2, X = Cl, Br, I) monolayer binary materials</title><source>Institute of Physics:Jisc Collections:IOP Publishing Read and Publish 2024-2025 (Reading List)</source><creator>Kumar, Vipin ; Jeon, Hwajun ; Kumar, Pushpendra ; Trung, Le Gia ; Ahuja, Rajeev ; Gwag, Jin Seog</creator><creatorcontrib>Kumar, Vipin ; Jeon, Hwajun ; Kumar, Pushpendra ; Trung, Le Gia ; Ahuja, Rajeev ; Gwag, Jin Seog</creatorcontrib><description>This paper investigated the electronic properties and photoresponse of two-dimensional SnX (X = Cl, Br, I) monolayer binary materials using computational techniques. The calculated band structure and density of states indicate that these are large band gap semiconducting materials with an indirect band gap. The studied chemical bonding mechanism shows the existence of the hybrid bonding of ionic and covalent bonds in these dihalide materials. The valence band (VB) and conduction band (CB) edge positions are also estimated, using the concept of electronegativity and band gap, to investigate the photocatalytic activity of SnX . Next, we investigated the polarization and energy-dependent dielectric and optical functions along the crystallographic axes of these materials in the linear response approach of the perturbing incident oscillating light field. These materials exhibit an anisotropic behavior of these functions, especially in the high-energy visible and low-energy ultraviolet (UV) regions. The absorption of incident light photons is very fast in SnI than SnBr and SnCl in the low-energy UV region. It demonstrates the higher absorption coefficient and optical conductivity in Snl . The obtained average static refractive index of SnCl is comparable to that of glass (1.5), showing its application as transparent material. The low reflection coefficient, less than 20%, makes them superior for antireflection coating materials in the infrared and visible regions. The prominent energy loss peaks show the existence of plasmon resonances in these materials. The most of losses occur in the UV region. The investigated electronic and photoresponse properties indicate that these Sn-based dihalide materials are excellent for electronic devices and optoelectronic applications. Also, the calculated VB and CB edge positions with respect to the normal hydrogen electrode show the favorable water-splitting capability of these materials.</description><identifier>ISSN: 0953-8984</identifier><identifier>ISSN: 1361-648X</identifier><identifier>EISSN: 1361-648X</identifier><identifier>DOI: 10.1088/1361-648X/ad1138</identifier><identifier>PMID: 38035383</identifier><identifier>CODEN: JCOMEL</identifier><language>eng</language><publisher>England: IOP Publishing</publisher><subject>2D materials ; anisotropic properties ; density functional theory ; dielectric properties ; optical properties</subject><ispartof>Journal of physics. Condensed matter, 2024-03, Vol.36 (11), p.115701</ispartof><rights>2023 IOP Publishing Ltd</rights><rights>2023 IOP Publishing Ltd.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c405t-b1a0d12e1e96b2c5bce97ba782a18e8ab7f9f0c630fdabd378bee936a8d46b7e3</citedby><cites>FETCH-LOGICAL-c405t-b1a0d12e1e96b2c5bce97ba782a18e8ab7f9f0c630fdabd378bee936a8d46b7e3</cites><orcidid>0000-0002-1282-1709 ; 0000-0002-2211-2607 ; 0000-0002-9699-5676 ; 0000-0003-1231-9994</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,315,786,790,891,27957,27958</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38035383$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-522733$$DView record from Swedish Publication Index$$Hfree_for_read</backlink></links><search><creatorcontrib>Kumar, Vipin</creatorcontrib><creatorcontrib>Jeon, Hwajun</creatorcontrib><creatorcontrib>Kumar, Pushpendra</creatorcontrib><creatorcontrib>Trung, Le Gia</creatorcontrib><creatorcontrib>Ahuja, Rajeev</creatorcontrib><creatorcontrib>Gwag, Jin Seog</creatorcontrib><title>Anisotropic properties of two-dimensional (2D) tin dihalide (SnX2, X = Cl, Br, I) monolayer binary materials</title><title>Journal of physics. Condensed matter</title><addtitle>JPhysCM</addtitle><addtitle>J. Phys.: Condens. Matter</addtitle><description>This paper investigated the electronic properties and photoresponse of two-dimensional SnX (X = Cl, Br, I) monolayer binary materials using computational techniques. The calculated band structure and density of states indicate that these are large band gap semiconducting materials with an indirect band gap. The studied chemical bonding mechanism shows the existence of the hybrid bonding of ionic and covalent bonds in these dihalide materials. The valence band (VB) and conduction band (CB) edge positions are also estimated, using the concept of electronegativity and band gap, to investigate the photocatalytic activity of SnX . Next, we investigated the polarization and energy-dependent dielectric and optical functions along the crystallographic axes of these materials in the linear response approach of the perturbing incident oscillating light field. These materials exhibit an anisotropic behavior of these functions, especially in the high-energy visible and low-energy ultraviolet (UV) regions. The absorption of incident light photons is very fast in SnI than SnBr and SnCl in the low-energy UV region. It demonstrates the higher absorption coefficient and optical conductivity in Snl . The obtained average static refractive index of SnCl is comparable to that of glass (1.5), showing its application as transparent material. The low reflection coefficient, less than 20%, makes them superior for antireflection coating materials in the infrared and visible regions. The prominent energy loss peaks show the existence of plasmon resonances in these materials. The most of losses occur in the UV region. The investigated electronic and photoresponse properties indicate that these Sn-based dihalide materials are excellent for electronic devices and optoelectronic applications. Also, the calculated VB and CB edge positions with respect to the normal hydrogen electrode show the favorable water-splitting capability of these materials.</description><subject>2D materials</subject><subject>anisotropic properties</subject><subject>density functional theory</subject><subject>dielectric properties</subject><subject>optical properties</subject><issn>0953-8984</issn><issn>1361-648X</issn><issn>1361-648X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp1kUFv1DAQhS0Eokvhzgn5xlbatHacOM6Bw7IFWqkShxa0t5EdT8BVEgc7UdV_j1cpizggWXqS9c2z5z1C3nJ2zplSF1xInslC7S-05VyoZ2R1vHpOVqwuRaZqVZyQVzHeM8YKJYqX5EQoJkqhxIp028FFPwU_uoaOSTBMDiP1LZ0efGZdj0N0ftAdXeeXZ3RyA7Xup-6cRbq-Hfb5hu7pB7rrNvRj2NDrM9r7wXf6EQM1btDhkfZ6wuB0F1-TF20SfPOkp-Tb5093u6vs5uuX6932JmsKVk6Z4ZpZniPHWpq8KU2DdWV0pXLNFSptqrZuWSMFa602VlTKINZCamULaSoUp2Sz-MYHHGcDY3B9-gh47eDSfd-CDz9gnqHM80qIhK8XPO3_a8Y4Qe9ig12nB_RzhFzVUnHGmUwoW9Am-BgDtkdvzuBQCRzyh0P-sFSSRt49uc-mR3sc-NNBAt4vgPMj3Ps5pLAjND0ICZynU1aMw2jbv3v9Q_735d-hR6F5</recordid><startdate>20240320</startdate><enddate>20240320</enddate><creator>Kumar, Vipin</creator><creator>Jeon, Hwajun</creator><creator>Kumar, Pushpendra</creator><creator>Trung, Le Gia</creator><creator>Ahuja, Rajeev</creator><creator>Gwag, Jin Seog</creator><general>IOP Publishing</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>ADTPV</scope><scope>AOWAS</scope><scope>DF2</scope><orcidid>https://orcid.org/0000-0002-1282-1709</orcidid><orcidid>https://orcid.org/0000-0002-2211-2607</orcidid><orcidid>https://orcid.org/0000-0002-9699-5676</orcidid><orcidid>https://orcid.org/0000-0003-1231-9994</orcidid></search><sort><creationdate>20240320</creationdate><title>Anisotropic properties of two-dimensional (2D) tin dihalide (SnX2, X = Cl, Br, I) monolayer binary materials</title><author>Kumar, Vipin ; Jeon, Hwajun ; Kumar, Pushpendra ; Trung, Le Gia ; Ahuja, Rajeev ; Gwag, Jin Seog</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c405t-b1a0d12e1e96b2c5bce97ba782a18e8ab7f9f0c630fdabd378bee936a8d46b7e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>2D materials</topic><topic>anisotropic properties</topic><topic>density functional theory</topic><topic>dielectric properties</topic><topic>optical properties</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kumar, Vipin</creatorcontrib><creatorcontrib>Jeon, Hwajun</creatorcontrib><creatorcontrib>Kumar, Pushpendra</creatorcontrib><creatorcontrib>Trung, Le Gia</creatorcontrib><creatorcontrib>Ahuja, Rajeev</creatorcontrib><creatorcontrib>Gwag, Jin Seog</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>SwePub</collection><collection>SwePub Articles</collection><collection>SWEPUB Uppsala universitet</collection><jtitle>Journal of physics. Condensed matter</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kumar, Vipin</au><au>Jeon, Hwajun</au><au>Kumar, Pushpendra</au><au>Trung, Le Gia</au><au>Ahuja, Rajeev</au><au>Gwag, Jin Seog</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Anisotropic properties of two-dimensional (2D) tin dihalide (SnX2, X = Cl, Br, I) monolayer binary materials</atitle><jtitle>Journal of physics. Condensed matter</jtitle><stitle>JPhysCM</stitle><addtitle>J. Phys.: Condens. Matter</addtitle><date>2024-03-20</date><risdate>2024</risdate><volume>36</volume><issue>11</issue><spage>115701</spage><pages>115701-</pages><issn>0953-8984</issn><issn>1361-648X</issn><eissn>1361-648X</eissn><coden>JCOMEL</coden><notes>JPCM-122342.R2</notes><notes>ObjectType-Article-1</notes><notes>SourceType-Scholarly Journals-1</notes><notes>ObjectType-Feature-2</notes><notes>content type line 23</notes><abstract>This paper investigated the electronic properties and photoresponse of two-dimensional SnX (X = Cl, Br, I) monolayer binary materials using computational techniques. The calculated band structure and density of states indicate that these are large band gap semiconducting materials with an indirect band gap. The studied chemical bonding mechanism shows the existence of the hybrid bonding of ionic and covalent bonds in these dihalide materials. The valence band (VB) and conduction band (CB) edge positions are also estimated, using the concept of electronegativity and band gap, to investigate the photocatalytic activity of SnX . Next, we investigated the polarization and energy-dependent dielectric and optical functions along the crystallographic axes of these materials in the linear response approach of the perturbing incident oscillating light field. These materials exhibit an anisotropic behavior of these functions, especially in the high-energy visible and low-energy ultraviolet (UV) regions. The absorption of incident light photons is very fast in SnI than SnBr and SnCl in the low-energy UV region. It demonstrates the higher absorption coefficient and optical conductivity in Snl . The obtained average static refractive index of SnCl is comparable to that of glass (1.5), showing its application as transparent material. The low reflection coefficient, less than 20%, makes them superior for antireflection coating materials in the infrared and visible regions. The prominent energy loss peaks show the existence of plasmon resonances in these materials. The most of losses occur in the UV region. The investigated electronic and photoresponse properties indicate that these Sn-based dihalide materials are excellent for electronic devices and optoelectronic applications. Also, the calculated VB and CB edge positions with respect to the normal hydrogen electrode show the favorable water-splitting capability of these materials.</abstract><cop>England</cop><pub>IOP Publishing</pub><pmid>38035383</pmid><doi>10.1088/1361-648X/ad1138</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-1282-1709</orcidid><orcidid>https://orcid.org/0000-0002-2211-2607</orcidid><orcidid>https://orcid.org/0000-0002-9699-5676</orcidid><orcidid>https://orcid.org/0000-0003-1231-9994</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0953-8984
ispartof Journal of physics. Condensed matter, 2024-03, Vol.36 (11), p.115701
issn 0953-8984
1361-648X
1361-648X
language eng
recordid cdi_crossref_primary_10_1088_1361_648X_ad1138
source Institute of Physics:Jisc Collections:IOP Publishing Read and Publish 2024-2025 (Reading List)
subjects 2D materials
anisotropic properties
density functional theory
dielectric properties
optical properties
title Anisotropic properties of two-dimensional (2D) tin dihalide (SnX2, X = Cl, Br, I) monolayer binary materials
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-09-21T22%3A57%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Anisotropic%20properties%20of%20two-dimensional%20(2D)%20tin%20dihalide%20(SnX2,%20X%20=%20Cl,%20Br,%20I)%20monolayer%20binary%20materials&rft.jtitle=Journal%20of%20physics.%20Condensed%20matter&rft.au=Kumar,%20Vipin&rft.date=2024-03-20&rft.volume=36&rft.issue=11&rft.spage=115701&rft.pages=115701-&rft.issn=0953-8984&rft.eissn=1361-648X&rft.coden=JCOMEL&rft_id=info:doi/10.1088/1361-648X/ad1138&rft_dat=%3Cproquest_cross%3E2896810106%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c405t-b1a0d12e1e96b2c5bce97ba782a18e8ab7f9f0c630fdabd378bee936a8d46b7e3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2896810106&rft_id=info:pmid/38035383&rfr_iscdi=true