Loading…

Structural basis for the one-pot formation of the diarylheptanoid scaffold by curcuminoid synthase from Oryza sativa

Curcuminoid synthase (CUS) from Oryza sativa is a plant-specific type III polyketide synthase (PKS) that catalyzes the remarkable one-pot formation of the C₆-C₇-C₆ diarylheptanoid scaffold of bisdemethoxycurcumin, by the condensation of two molecules of 4-coumaroyl-CoA and one molecule of malonyl-Co...

Full description

Saved in:
Bibliographic Details
Published in:Proceedings of the National Academy of Sciences - PNAS 2010-11, Vol.107 (46), p.19778-19783
Main Authors: Morita, Hiroyuki, Wanibuchi, Kiyofumi, Nii, Hirohiko, Kato, Ryohei, Sugio, Shigetoshi, Abe, Ikuro, Croteau, Rodney B.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c498t-fd743bac426c407af67438dc4fa7025e7cdb4229adda9229916e92ffc482c8123
cites cdi_FETCH-LOGICAL-c498t-fd743bac426c407af67438dc4fa7025e7cdb4229adda9229916e92ffc482c8123
container_end_page 19783
container_issue 46
container_start_page 19778
container_title Proceedings of the National Academy of Sciences - PNAS
container_volume 107
creator Morita, Hiroyuki
Wanibuchi, Kiyofumi
Nii, Hirohiko
Kato, Ryohei
Sugio, Shigetoshi
Abe, Ikuro
Croteau, Rodney B.
description Curcuminoid synthase (CUS) from Oryza sativa is a plant-specific type III polyketide synthase (PKS) that catalyzes the remarkable one-pot formation of the C₆-C₇-C₆ diarylheptanoid scaffold of bisdemethoxycurcumin, by the condensation of two molecules of 4-coumaroyl-CoA and one molecule of malonyl-CoA. The crystal structure of O. sativa CUS was solved at 2.5-Å resolution, which revealed a unique, downward expanding active-site architecture, previously unidentified in the known type III PKSs. The large active-site cavity is long enough to accommodate the two C₆-C₃ coumaroyl units and one malonyl unit. Furthermore, the crystal structure indicated the presence of a putative nucleophilic water molecule, which forms hydrogen bond networks with Ser351-Asn142-H₂O-Tyr207-Glu202, neighboring the catalytic Cys174 at the active-site center. These observations suggest that CUS employs unique catalytic machinery for the one-pot formation of the C₆-C₇-C₆ scaffold. Thus, CUS utilizes the nucleophilic water to terminate the initial polyketide chain elongation at the diketide stage. Thioester bond cleavage of the enzyme-bound intermediate generates 4-coumaroyldiketide acid, which is then kept within the downward expanding pocket for subsequent decarboxylative condensation with the second 4-coumaroyl-CoA starter, to produce bisdemethoxycurcumin. The structure-based site-directed mutants, M265L and G274F, altered the substrate and product specificities to accept 4-hydroxyphenylpropionyl-CoA as the starter to produce tetrahydrobisdemethoxycurcumin. These findings not only provide a structural basis for the catalytic machinery of CUS but also suggest further strategies toward expanding the biosynthetic repertoire of the type III PKS enzymes.
doi_str_mv 10.1073/pnas.1011499107
format article
fullrecord <record><control><sourceid>jstor_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1073_pnas_1011499107</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>25748756</jstor_id><sourcerecordid>25748756</sourcerecordid><originalsourceid>FETCH-LOGICAL-c498t-fd743bac426c407af67438dc4fa7025e7cdb4229adda9229916e92ffc482c8123</originalsourceid><addsrcrecordid>eNpdkc1vFSEUxYnR2Gd17UpD3LgaCwzDx8bENH4lTbqwXROGAR8vMzAC0-T518tznn22qwv3_u6BkwPAa4w-YMTbiznoXE8YUylr4wnYYCRxw6hET8EGIcIbQQk9Ay9y3iGEZCfQc3BGMKKY8W4Dyo-SFlOWpEfY6-wzdDHBsrUwBtvMsRzuky4-Bhjd38HgddqPWzsXHaIfYDbauTgOsN9DsySzTH7t70PZ6myhS3GC12n_W8Ncle70S_DM6THbV8d6Dm6_fL65_NZcXX_9fvnpqjFUitK4gdO214YSZiji2rF6F4OhTnNEOsvN0FNCpB4GLWuVmFlJnDNUECMwac_Bx1V3XvrJDsaGUn2qOfmpWlBRe_VwEvxW_Yx3qmq1LZNV4P1RIMVfi81FTT4bO4462LhkJTrGBRItquS7R-QuLilUd0og3hHMuajQxQqZFHNO1t1_BSN1yFMd8lSnPOvG2_8d3PP_AqwAPAKHzZMcV5QpLNdX36zILpeYThIdp4J3rP0Dsi2zUA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>807521778</pqid></control><display><type>article</type><title>Structural basis for the one-pot formation of the diarylheptanoid scaffold by curcuminoid synthase from Oryza sativa</title><source>PubMed (Medline)</source><source>JSTOR Archival Journals and Primary Sources Collection</source><creator>Morita, Hiroyuki ; Wanibuchi, Kiyofumi ; Nii, Hirohiko ; Kato, Ryohei ; Sugio, Shigetoshi ; Abe, Ikuro ; Croteau, Rodney B.</creator><creatorcontrib>Morita, Hiroyuki ; Wanibuchi, Kiyofumi ; Nii, Hirohiko ; Kato, Ryohei ; Sugio, Shigetoshi ; Abe, Ikuro ; Croteau, Rodney B.</creatorcontrib><description>Curcuminoid synthase (CUS) from Oryza sativa is a plant-specific type III polyketide synthase (PKS) that catalyzes the remarkable one-pot formation of the C₆-C₇-C₆ diarylheptanoid scaffold of bisdemethoxycurcumin, by the condensation of two molecules of 4-coumaroyl-CoA and one molecule of malonyl-CoA. The crystal structure of O. sativa CUS was solved at 2.5-Å resolution, which revealed a unique, downward expanding active-site architecture, previously unidentified in the known type III PKSs. The large active-site cavity is long enough to accommodate the two C₆-C₃ coumaroyl units and one malonyl unit. Furthermore, the crystal structure indicated the presence of a putative nucleophilic water molecule, which forms hydrogen bond networks with Ser351-Asn142-H₂O-Tyr207-Glu202, neighboring the catalytic Cys174 at the active-site center. These observations suggest that CUS employs unique catalytic machinery for the one-pot formation of the C₆-C₇-C₆ scaffold. Thus, CUS utilizes the nucleophilic water to terminate the initial polyketide chain elongation at the diketide stage. Thioester bond cleavage of the enzyme-bound intermediate generates 4-coumaroyldiketide acid, which is then kept within the downward expanding pocket for subsequent decarboxylative condensation with the second 4-coumaroyl-CoA starter, to produce bisdemethoxycurcumin. The structure-based site-directed mutants, M265L and G274F, altered the substrate and product specificities to accept 4-hydroxyphenylpropionyl-CoA as the starter to produce tetrahydrobisdemethoxycurcumin. These findings not only provide a structural basis for the catalytic machinery of CUS but also suggest further strategies toward expanding the biosynthetic repertoire of the type III PKS enzymes.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.1011499107</identifier><identifier>PMID: 21041675</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Binding sites ; Biochemistry - methods ; Biological Sciences ; Catalytic Domain ; Chalconoids ; Chromatography, High Pressure Liquid ; Condensation ; Crystal structure ; Crystallography, X-Ray ; Diarylheptanoids - chemistry ; Diarylheptanoids - metabolism ; Electrons ; Enzymes ; Hydrogen Bonding ; Hydrogen bonds ; Ligases - chemistry ; Ligases - metabolism ; Models, Molecular ; Molecular structure ; Molecules ; Monomers ; Mutagenesis - genetics ; Mutation ; Oryza - enzymology ; Polyketides ; Rice ; Scaffolds ; Structure-Activity Relationship ; Substrate specificity ; Thiolester Hydrolases - chemistry ; Thiolester Hydrolases - metabolism</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2010-11, Vol.107 (46), p.19778-19783</ispartof><rights>Copyright National Academy of Sciences Nov 16, 2010</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c498t-fd743bac426c407af67438dc4fa7025e7cdb4229adda9229916e92ffc482c8123</citedby><cites>FETCH-LOGICAL-c498t-fd743bac426c407af67438dc4fa7025e7cdb4229adda9229916e92ffc482c8123</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.pnas.org/content/107/46.cover.gif</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/25748756$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/25748756$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,315,733,786,790,891,27957,27958,53827,53829,58593,58826</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/21041675$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Morita, Hiroyuki</creatorcontrib><creatorcontrib>Wanibuchi, Kiyofumi</creatorcontrib><creatorcontrib>Nii, Hirohiko</creatorcontrib><creatorcontrib>Kato, Ryohei</creatorcontrib><creatorcontrib>Sugio, Shigetoshi</creatorcontrib><creatorcontrib>Abe, Ikuro</creatorcontrib><creatorcontrib>Croteau, Rodney B.</creatorcontrib><title>Structural basis for the one-pot formation of the diarylheptanoid scaffold by curcuminoid synthase from Oryza sativa</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>Curcuminoid synthase (CUS) from Oryza sativa is a plant-specific type III polyketide synthase (PKS) that catalyzes the remarkable one-pot formation of the C₆-C₇-C₆ diarylheptanoid scaffold of bisdemethoxycurcumin, by the condensation of two molecules of 4-coumaroyl-CoA and one molecule of malonyl-CoA. The crystal structure of O. sativa CUS was solved at 2.5-Å resolution, which revealed a unique, downward expanding active-site architecture, previously unidentified in the known type III PKSs. The large active-site cavity is long enough to accommodate the two C₆-C₃ coumaroyl units and one malonyl unit. Furthermore, the crystal structure indicated the presence of a putative nucleophilic water molecule, which forms hydrogen bond networks with Ser351-Asn142-H₂O-Tyr207-Glu202, neighboring the catalytic Cys174 at the active-site center. These observations suggest that CUS employs unique catalytic machinery for the one-pot formation of the C₆-C₇-C₆ scaffold. Thus, CUS utilizes the nucleophilic water to terminate the initial polyketide chain elongation at the diketide stage. Thioester bond cleavage of the enzyme-bound intermediate generates 4-coumaroyldiketide acid, which is then kept within the downward expanding pocket for subsequent decarboxylative condensation with the second 4-coumaroyl-CoA starter, to produce bisdemethoxycurcumin. The structure-based site-directed mutants, M265L and G274F, altered the substrate and product specificities to accept 4-hydroxyphenylpropionyl-CoA as the starter to produce tetrahydrobisdemethoxycurcumin. These findings not only provide a structural basis for the catalytic machinery of CUS but also suggest further strategies toward expanding the biosynthetic repertoire of the type III PKS enzymes.</description><subject>Binding sites</subject><subject>Biochemistry - methods</subject><subject>Biological Sciences</subject><subject>Catalytic Domain</subject><subject>Chalconoids</subject><subject>Chromatography, High Pressure Liquid</subject><subject>Condensation</subject><subject>Crystal structure</subject><subject>Crystallography, X-Ray</subject><subject>Diarylheptanoids - chemistry</subject><subject>Diarylheptanoids - metabolism</subject><subject>Electrons</subject><subject>Enzymes</subject><subject>Hydrogen Bonding</subject><subject>Hydrogen bonds</subject><subject>Ligases - chemistry</subject><subject>Ligases - metabolism</subject><subject>Models, Molecular</subject><subject>Molecular structure</subject><subject>Molecules</subject><subject>Monomers</subject><subject>Mutagenesis - genetics</subject><subject>Mutation</subject><subject>Oryza - enzymology</subject><subject>Polyketides</subject><subject>Rice</subject><subject>Scaffolds</subject><subject>Structure-Activity Relationship</subject><subject>Substrate specificity</subject><subject>Thiolester Hydrolases - chemistry</subject><subject>Thiolester Hydrolases - metabolism</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNpdkc1vFSEUxYnR2Gd17UpD3LgaCwzDx8bENH4lTbqwXROGAR8vMzAC0-T518tznn22qwv3_u6BkwPAa4w-YMTbiznoXE8YUylr4wnYYCRxw6hET8EGIcIbQQk9Ay9y3iGEZCfQc3BGMKKY8W4Dyo-SFlOWpEfY6-wzdDHBsrUwBtvMsRzuky4-Bhjd38HgddqPWzsXHaIfYDbauTgOsN9DsySzTH7t70PZ6myhS3GC12n_W8Ncle70S_DM6THbV8d6Dm6_fL65_NZcXX_9fvnpqjFUitK4gdO214YSZiji2rF6F4OhTnNEOsvN0FNCpB4GLWuVmFlJnDNUECMwac_Bx1V3XvrJDsaGUn2qOfmpWlBRe_VwEvxW_Yx3qmq1LZNV4P1RIMVfi81FTT4bO4462LhkJTrGBRItquS7R-QuLilUd0og3hHMuajQxQqZFHNO1t1_BSN1yFMd8lSnPOvG2_8d3PP_AqwAPAKHzZMcV5QpLNdX36zILpeYThIdp4J3rP0Dsi2zUA</recordid><startdate>20101116</startdate><enddate>20101116</enddate><creator>Morita, Hiroyuki</creator><creator>Wanibuchi, Kiyofumi</creator><creator>Nii, Hirohiko</creator><creator>Kato, Ryohei</creator><creator>Sugio, Shigetoshi</creator><creator>Abe, Ikuro</creator><creator>Croteau, Rodney B.</creator><general>National Academy of Sciences</general><general>National Acad Sciences</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>F1W</scope><scope>H95</scope><scope>L.G</scope><scope>5PM</scope></search><sort><creationdate>20101116</creationdate><title>Structural basis for the one-pot formation of the diarylheptanoid scaffold by curcuminoid synthase from Oryza sativa</title><author>Morita, Hiroyuki ; Wanibuchi, Kiyofumi ; Nii, Hirohiko ; Kato, Ryohei ; Sugio, Shigetoshi ; Abe, Ikuro ; Croteau, Rodney B.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c498t-fd743bac426c407af67438dc4fa7025e7cdb4229adda9229916e92ffc482c8123</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Binding sites</topic><topic>Biochemistry - methods</topic><topic>Biological Sciences</topic><topic>Catalytic Domain</topic><topic>Chalconoids</topic><topic>Chromatography, High Pressure Liquid</topic><topic>Condensation</topic><topic>Crystal structure</topic><topic>Crystallography, X-Ray</topic><topic>Diarylheptanoids - chemistry</topic><topic>Diarylheptanoids - metabolism</topic><topic>Electrons</topic><topic>Enzymes</topic><topic>Hydrogen Bonding</topic><topic>Hydrogen bonds</topic><topic>Ligases - chemistry</topic><topic>Ligases - metabolism</topic><topic>Models, Molecular</topic><topic>Molecular structure</topic><topic>Molecules</topic><topic>Monomers</topic><topic>Mutagenesis - genetics</topic><topic>Mutation</topic><topic>Oryza - enzymology</topic><topic>Polyketides</topic><topic>Rice</topic><topic>Scaffolds</topic><topic>Structure-Activity Relationship</topic><topic>Substrate specificity</topic><topic>Thiolester Hydrolases - chemistry</topic><topic>Thiolester Hydrolases - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Morita, Hiroyuki</creatorcontrib><creatorcontrib>Wanibuchi, Kiyofumi</creatorcontrib><creatorcontrib>Nii, Hirohiko</creatorcontrib><creatorcontrib>Kato, Ryohei</creatorcontrib><creatorcontrib>Sugio, Shigetoshi</creatorcontrib><creatorcontrib>Abe, Ikuro</creatorcontrib><creatorcontrib>Croteau, Rodney B.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 1: Biological Sciences &amp; Living Resources</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Morita, Hiroyuki</au><au>Wanibuchi, Kiyofumi</au><au>Nii, Hirohiko</au><au>Kato, Ryohei</au><au>Sugio, Shigetoshi</au><au>Abe, Ikuro</au><au>Croteau, Rodney B.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Structural basis for the one-pot formation of the diarylheptanoid scaffold by curcuminoid synthase from Oryza sativa</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2010-11-16</date><risdate>2010</risdate><volume>107</volume><issue>46</issue><spage>19778</spage><epage>19783</epage><pages>19778-19783</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><notes>ObjectType-Article-2</notes><notes>SourceType-Scholarly Journals-1</notes><notes>ObjectType-Feature-1</notes><notes>content type line 23</notes><notes>Author contributions: H.M. and I.A. designed research; H.M., K.W., H.N., and I.A. performed research; H.M., K.W., H.N., R.K., S.S., and I.A. analyzed data; and H.M. and I.A. wrote the paper.</notes><notes>Edited by Rodney B. Croteau, Washington State University, Pullman, WA, and approved September 28, 2010 (received for review August 3, 2010)</notes><abstract>Curcuminoid synthase (CUS) from Oryza sativa is a plant-specific type III polyketide synthase (PKS) that catalyzes the remarkable one-pot formation of the C₆-C₇-C₆ diarylheptanoid scaffold of bisdemethoxycurcumin, by the condensation of two molecules of 4-coumaroyl-CoA and one molecule of malonyl-CoA. The crystal structure of O. sativa CUS was solved at 2.5-Å resolution, which revealed a unique, downward expanding active-site architecture, previously unidentified in the known type III PKSs. The large active-site cavity is long enough to accommodate the two C₆-C₃ coumaroyl units and one malonyl unit. Furthermore, the crystal structure indicated the presence of a putative nucleophilic water molecule, which forms hydrogen bond networks with Ser351-Asn142-H₂O-Tyr207-Glu202, neighboring the catalytic Cys174 at the active-site center. These observations suggest that CUS employs unique catalytic machinery for the one-pot formation of the C₆-C₇-C₆ scaffold. Thus, CUS utilizes the nucleophilic water to terminate the initial polyketide chain elongation at the diketide stage. Thioester bond cleavage of the enzyme-bound intermediate generates 4-coumaroyldiketide acid, which is then kept within the downward expanding pocket for subsequent decarboxylative condensation with the second 4-coumaroyl-CoA starter, to produce bisdemethoxycurcumin. The structure-based site-directed mutants, M265L and G274F, altered the substrate and product specificities to accept 4-hydroxyphenylpropionyl-CoA as the starter to produce tetrahydrobisdemethoxycurcumin. These findings not only provide a structural basis for the catalytic machinery of CUS but also suggest further strategies toward expanding the biosynthetic repertoire of the type III PKS enzymes.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>21041675</pmid><doi>10.1073/pnas.1011499107</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0027-8424
ispartof Proceedings of the National Academy of Sciences - PNAS, 2010-11, Vol.107 (46), p.19778-19783
issn 0027-8424
1091-6490
language eng
recordid cdi_crossref_primary_10_1073_pnas_1011499107
source PubMed (Medline); JSTOR Archival Journals and Primary Sources Collection
subjects Binding sites
Biochemistry - methods
Biological Sciences
Catalytic Domain
Chalconoids
Chromatography, High Pressure Liquid
Condensation
Crystal structure
Crystallography, X-Ray
Diarylheptanoids - chemistry
Diarylheptanoids - metabolism
Electrons
Enzymes
Hydrogen Bonding
Hydrogen bonds
Ligases - chemistry
Ligases - metabolism
Models, Molecular
Molecular structure
Molecules
Monomers
Mutagenesis - genetics
Mutation
Oryza - enzymology
Polyketides
Rice
Scaffolds
Structure-Activity Relationship
Substrate specificity
Thiolester Hydrolases - chemistry
Thiolester Hydrolases - metabolism
title Structural basis for the one-pot formation of the diarylheptanoid scaffold by curcuminoid synthase from Oryza sativa
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-09-23T04%3A20%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Structural%20basis%20for%20the%20one-pot%20formation%20of%20the%20diarylheptanoid%20scaffold%20by%20curcuminoid%20synthase%20from%20Oryza%20sativa&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Morita,%20Hiroyuki&rft.date=2010-11-16&rft.volume=107&rft.issue=46&rft.spage=19778&rft.epage=19783&rft.pages=19778-19783&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.1011499107&rft_dat=%3Cjstor_cross%3E25748756%3C/jstor_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c498t-fd743bac426c407af67438dc4fa7025e7cdb4229adda9229916e92ffc482c8123%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=807521778&rft_id=info:pmid/21041675&rft_jstor_id=25748756&rfr_iscdi=true