Loading…

Achromatic acoustic gradient-index phononic crystal lens for broadband focusing

The aim of this study is to realize an achromatic acoustic gradient-index (GRIN) phononic crystal (PC) lens system with a spatially invariant focal length over a broad operating frequency range. To this end, we propose an approach of introducing thin achromatic coating layers that can be easily asse...

Full description

Saved in:
Bibliographic Details
Published in:Applied physics letters 2020-06, Vol.116 (23)
Main Authors: Hyun, Jaeyub, Cho, Wan-Ho, Park, Choon-Su, Chang, Jiho, Kim, Miso
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c257t-1c506d22309a18c086de2e243083720e684e35b9c40772536f8c09889bfb793d3
cites cdi_FETCH-LOGICAL-c257t-1c506d22309a18c086de2e243083720e684e35b9c40772536f8c09889bfb793d3
container_end_page
container_issue 23
container_start_page
container_title Applied physics letters
container_volume 116
creator Hyun, Jaeyub
Cho, Wan-Ho
Park, Choon-Su
Chang, Jiho
Kim, Miso
description The aim of this study is to realize an achromatic acoustic gradient-index (GRIN) phononic crystal (PC) lens system with a spatially invariant focal length over a broad operating frequency range. To this end, we propose an approach of introducing thin achromatic coating layers that can be easily assembled into the front and rear regions of the acoustic GRIN PC lens. A systematic design method based on topology optimization (TO) is developed to inversely design the achromatic coating components. The topology-optimized achromatic coating components are fabricated using 3D printing and coupled with the acoustic GRIN PC lens for acoustic characterization. Both numerical simulation and experimental characterization demonstrate the achromatic focusing capabilities of the GRIN PC lens with the designed achromatic coating layers in a wide range of frequencies (2.5 kHz–5.5 kHz). The proposed concept of applying achromatic coating layers along with the TO-based design method is expected to provide remarkable versatility to design GRIN PC lens-based applications such as energy harvesting, acoustic imaging, and acoustic wireless power transfer in broadband operation.
doi_str_mv 10.1063/5.0009799
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1063_5_0009799</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2410878654</sourcerecordid><originalsourceid>FETCH-LOGICAL-c257t-1c506d22309a18c086de2e243083720e684e35b9c40772536f8c09889bfb793d3</originalsourceid><addsrcrecordid>eNqdkEtLAzEUhYMoWKsL_8GAK4WpeUxey1KsCoVudB0ySaad0iZjMiP235syBfeu7j2Hj3s5B4B7BGcIMvJMZxBCyaW8ABMEOS8JQuISTLJLSiYpugY3Ke2ypJiQCVjPzTaGg-5bU2gThnRaNlHb1vm-bL11P0W3DT747Jt4TL3eF3vnU9GEWNQxaFtrb7MyQ2r95hZcNXqf3N15TsHn8uVj8Vau1q_vi_mqNJjyvkSGQmYxJlBqJAwUzDrscEWgIBxDx0TlCK2lqXIGTAlrMiSFkHVTc0ksmYKH8W4Xw9fgUq92YYg-v1S4QlBwwWiVqceRMjGkFF2jutgedDwqBNWpL0XVua_MPo1sMm2f-wj-f_B3iH-g6mxDfgF5z3gF</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2410878654</pqid></control><display><type>article</type><title>Achromatic acoustic gradient-index phononic crystal lens for broadband focusing</title><source>American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list)</source><source>American Institute of Physics</source><creator>Hyun, Jaeyub ; Cho, Wan-Ho ; Park, Choon-Su ; Chang, Jiho ; Kim, Miso</creator><creatorcontrib>Hyun, Jaeyub ; Cho, Wan-Ho ; Park, Choon-Su ; Chang, Jiho ; Kim, Miso</creatorcontrib><description>The aim of this study is to realize an achromatic acoustic gradient-index (GRIN) phononic crystal (PC) lens system with a spatially invariant focal length over a broad operating frequency range. To this end, we propose an approach of introducing thin achromatic coating layers that can be easily assembled into the front and rear regions of the acoustic GRIN PC lens. A systematic design method based on topology optimization (TO) is developed to inversely design the achromatic coating components. The topology-optimized achromatic coating components are fabricated using 3D printing and coupled with the acoustic GRIN PC lens for acoustic characterization. Both numerical simulation and experimental characterization demonstrate the achromatic focusing capabilities of the GRIN PC lens with the designed achromatic coating layers in a wide range of frequencies (2.5 kHz–5.5 kHz). The proposed concept of applying achromatic coating layers along with the TO-based design method is expected to provide remarkable versatility to design GRIN PC lens-based applications such as energy harvesting, acoustic imaging, and acoustic wireless power transfer in broadband operation.</description><identifier>ISSN: 0003-6951</identifier><identifier>EISSN: 1077-3118</identifier><identifier>DOI: 10.1063/5.0009799</identifier><identifier>CODEN: APPLAB</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Acoustic imaging ; Acoustics ; Applied physics ; Broadband ; Coating ; Energy harvesting ; Frequency ranges ; Lenses ; Thin films ; Topology optimization ; Wireless power transmission</subject><ispartof>Applied physics letters, 2020-06, Vol.116 (23)</ispartof><rights>Author(s)</rights><rights>2020 Author(s). Published under license by AIP Publishing.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c257t-1c506d22309a18c086de2e243083720e684e35b9c40772536f8c09889bfb793d3</citedby><cites>FETCH-LOGICAL-c257t-1c506d22309a18c086de2e243083720e684e35b9c40772536f8c09889bfb793d3</cites><orcidid>0000-0001-5606-6293 ; 0000-0002-9070-5017 ; 0000-0002-2323-4892 ; 0000-0002-9025-1801</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/apl/article-lookup/doi/10.1063/5.0009799$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>315,786,788,790,801,27957,27958,76741</link.rule.ids></links><search><creatorcontrib>Hyun, Jaeyub</creatorcontrib><creatorcontrib>Cho, Wan-Ho</creatorcontrib><creatorcontrib>Park, Choon-Su</creatorcontrib><creatorcontrib>Chang, Jiho</creatorcontrib><creatorcontrib>Kim, Miso</creatorcontrib><title>Achromatic acoustic gradient-index phononic crystal lens for broadband focusing</title><title>Applied physics letters</title><description>The aim of this study is to realize an achromatic acoustic gradient-index (GRIN) phononic crystal (PC) lens system with a spatially invariant focal length over a broad operating frequency range. To this end, we propose an approach of introducing thin achromatic coating layers that can be easily assembled into the front and rear regions of the acoustic GRIN PC lens. A systematic design method based on topology optimization (TO) is developed to inversely design the achromatic coating components. The topology-optimized achromatic coating components are fabricated using 3D printing and coupled with the acoustic GRIN PC lens for acoustic characterization. Both numerical simulation and experimental characterization demonstrate the achromatic focusing capabilities of the GRIN PC lens with the designed achromatic coating layers in a wide range of frequencies (2.5 kHz–5.5 kHz). The proposed concept of applying achromatic coating layers along with the TO-based design method is expected to provide remarkable versatility to design GRIN PC lens-based applications such as energy harvesting, acoustic imaging, and acoustic wireless power transfer in broadband operation.</description><subject>Acoustic imaging</subject><subject>Acoustics</subject><subject>Applied physics</subject><subject>Broadband</subject><subject>Coating</subject><subject>Energy harvesting</subject><subject>Frequency ranges</subject><subject>Lenses</subject><subject>Thin films</subject><subject>Topology optimization</subject><subject>Wireless power transmission</subject><issn>0003-6951</issn><issn>1077-3118</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNqdkEtLAzEUhYMoWKsL_8GAK4WpeUxey1KsCoVudB0ySaad0iZjMiP235syBfeu7j2Hj3s5B4B7BGcIMvJMZxBCyaW8ABMEOS8JQuISTLJLSiYpugY3Ke2ypJiQCVjPzTaGg-5bU2gThnRaNlHb1vm-bL11P0W3DT747Jt4TL3eF3vnU9GEWNQxaFtrb7MyQ2r95hZcNXqf3N15TsHn8uVj8Vau1q_vi_mqNJjyvkSGQmYxJlBqJAwUzDrscEWgIBxDx0TlCK2lqXIGTAlrMiSFkHVTc0ksmYKH8W4Xw9fgUq92YYg-v1S4QlBwwWiVqceRMjGkFF2jutgedDwqBNWpL0XVua_MPo1sMm2f-wj-f_B3iH-g6mxDfgF5z3gF</recordid><startdate>20200608</startdate><enddate>20200608</enddate><creator>Hyun, Jaeyub</creator><creator>Cho, Wan-Ho</creator><creator>Park, Choon-Su</creator><creator>Chang, Jiho</creator><creator>Kim, Miso</creator><general>American Institute of Physics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-5606-6293</orcidid><orcidid>https://orcid.org/0000-0002-9070-5017</orcidid><orcidid>https://orcid.org/0000-0002-2323-4892</orcidid><orcidid>https://orcid.org/0000-0002-9025-1801</orcidid></search><sort><creationdate>20200608</creationdate><title>Achromatic acoustic gradient-index phononic crystal lens for broadband focusing</title><author>Hyun, Jaeyub ; Cho, Wan-Ho ; Park, Choon-Su ; Chang, Jiho ; Kim, Miso</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c257t-1c506d22309a18c086de2e243083720e684e35b9c40772536f8c09889bfb793d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Acoustic imaging</topic><topic>Acoustics</topic><topic>Applied physics</topic><topic>Broadband</topic><topic>Coating</topic><topic>Energy harvesting</topic><topic>Frequency ranges</topic><topic>Lenses</topic><topic>Thin films</topic><topic>Topology optimization</topic><topic>Wireless power transmission</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hyun, Jaeyub</creatorcontrib><creatorcontrib>Cho, Wan-Ho</creatorcontrib><creatorcontrib>Park, Choon-Su</creatorcontrib><creatorcontrib>Chang, Jiho</creatorcontrib><creatorcontrib>Kim, Miso</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Applied physics letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hyun, Jaeyub</au><au>Cho, Wan-Ho</au><au>Park, Choon-Su</au><au>Chang, Jiho</au><au>Kim, Miso</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Achromatic acoustic gradient-index phononic crystal lens for broadband focusing</atitle><jtitle>Applied physics letters</jtitle><date>2020-06-08</date><risdate>2020</risdate><volume>116</volume><issue>23</issue><issn>0003-6951</issn><eissn>1077-3118</eissn><coden>APPLAB</coden><abstract>The aim of this study is to realize an achromatic acoustic gradient-index (GRIN) phononic crystal (PC) lens system with a spatially invariant focal length over a broad operating frequency range. To this end, we propose an approach of introducing thin achromatic coating layers that can be easily assembled into the front and rear regions of the acoustic GRIN PC lens. A systematic design method based on topology optimization (TO) is developed to inversely design the achromatic coating components. The topology-optimized achromatic coating components are fabricated using 3D printing and coupled with the acoustic GRIN PC lens for acoustic characterization. Both numerical simulation and experimental characterization demonstrate the achromatic focusing capabilities of the GRIN PC lens with the designed achromatic coating layers in a wide range of frequencies (2.5 kHz–5.5 kHz). The proposed concept of applying achromatic coating layers along with the TO-based design method is expected to provide remarkable versatility to design GRIN PC lens-based applications such as energy harvesting, acoustic imaging, and acoustic wireless power transfer in broadband operation.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/5.0009799</doi><tpages>5</tpages><orcidid>https://orcid.org/0000-0001-5606-6293</orcidid><orcidid>https://orcid.org/0000-0002-9070-5017</orcidid><orcidid>https://orcid.org/0000-0002-2323-4892</orcidid><orcidid>https://orcid.org/0000-0002-9025-1801</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0003-6951
ispartof Applied physics letters, 2020-06, Vol.116 (23)
issn 0003-6951
1077-3118
language eng
recordid cdi_crossref_primary_10_1063_5_0009799
source American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list); American Institute of Physics
subjects Acoustic imaging
Acoustics
Applied physics
Broadband
Coating
Energy harvesting
Frequency ranges
Lenses
Thin films
Topology optimization
Wireless power transmission
title Achromatic acoustic gradient-index phononic crystal lens for broadband focusing
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-09-28T11%3A28%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Achromatic%20acoustic%20gradient-index%20phononic%20crystal%20lens%20for%20broadband%20focusing&rft.jtitle=Applied%20physics%20letters&rft.au=Hyun,%20Jaeyub&rft.date=2020-06-08&rft.volume=116&rft.issue=23&rft.issn=0003-6951&rft.eissn=1077-3118&rft.coden=APPLAB&rft_id=info:doi/10.1063/5.0009799&rft_dat=%3Cproquest_cross%3E2410878654%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c257t-1c506d22309a18c086de2e243083720e684e35b9c40772536f8c09889bfb793d3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2410878654&rft_id=info:pmid/&rfr_iscdi=true