Loading…

Role of geometry and fluid properties in droplet and thread formation processes in planar flow focusing

Droplet formation processes in microfluidic flow focusing devices have been examined previously and some of the key physical mechanisms for droplet formation revealed. However, the underlying physical behavior is still too poorly understood to utilize it for generating droplets of precise size. In t...

Full description

Saved in:
Bibliographic Details
Published in:Physics of fluids (1994) 2009-03, Vol.21 (3), p.032103-032103-14
Main Authors: Lee, Wingki, Walker, Lynn M., Anna, Shelley L.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c380t-ec3316b248e8538bcb074d7336a994dd3b10048b560e03ee0a24f4a4bcf1cf263
cites cdi_FETCH-LOGICAL-c380t-ec3316b248e8538bcb074d7336a994dd3b10048b560e03ee0a24f4a4bcf1cf263
container_end_page 032103-14
container_issue 3
container_start_page 032103
container_title Physics of fluids (1994)
container_volume 21
creator Lee, Wingki
Walker, Lynn M.
Anna, Shelley L.
description Droplet formation processes in microfluidic flow focusing devices have been examined previously and some of the key physical mechanisms for droplet formation revealed. However, the underlying physical behavior is still too poorly understood to utilize it for generating droplets of precise size. In this work, we formulate scaling arguments to define dimensionless variables which capture all the parameters that control the droplet breakup process, including the flow rates and the viscosities of the two immiscible fluids, the interfacial tension between the fluids and the numerous dimensions in the flow focusing device. To test these arguments, we perform flow focusing experiments and systematically vary the dimensional parameters. Through these experiments, we confirm the validity of the scaling arguments and find a power law relationship between the normalized droplet size and the capillary number. We demonstrate that droplet formation can be separated into an upstream process for primary droplet formation and a downstream process for thread formation. These results are key to the ability to tune the flow focusing process for specific applications that require monodisperse micron and submicron droplets and particles.
doi_str_mv 10.1063/1.3081407
format article
fullrecord <record><control><sourceid>scitation_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1063_1_3081407</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>scitation_primary_10_1063_1_3081407Role_of_geometry_and</sourcerecordid><originalsourceid>FETCH-LOGICAL-c380t-ec3316b248e8538bcb074d7336a994dd3b10048b560e03ee0a24f4a4bcf1cf263</originalsourceid><addsrcrecordid>eNp1kE1LxDAQhoMouK4e_Ae9ePDQddLJpu1FkMUvWBBEzyFNJ2uk25Ski_jvbberN08zwzzzwjyMXXJYcJB4wxcIBReQH7EZh6JMcynl8djnkEqJ_JSdxfgJAFhmcsY2r76hxNtkQ35LffhOdFsnttm5OumC7yj0jmLi2qQepob6_b7_CKQHzIet7p1vR9RQjBPZNbrVYQjxXwNidtG1m3N2YnUT6eJQ5-z94f5t9ZSuXx6fV3fr1GABfUoGkcsqEwUVSywqU0Eu6hxR6rIUdY0VBxBFtZRAgESgM2GFFpWx3NhM4pxdT7km-BgDWdUFt9XhW3FQoyHF1cHQwF5NbKej0Y0NujUu_h1kHGVZltnA3U5cNK7f__t_6KhTeat-dapBF_4ArUt8Iw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Role of geometry and fluid properties in droplet and thread formation processes in planar flow focusing</title><source>American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list)</source><source>AIP Digital Archive</source><creator>Lee, Wingki ; Walker, Lynn M. ; Anna, Shelley L.</creator><creatorcontrib>Lee, Wingki ; Walker, Lynn M. ; Anna, Shelley L.</creatorcontrib><description>Droplet formation processes in microfluidic flow focusing devices have been examined previously and some of the key physical mechanisms for droplet formation revealed. However, the underlying physical behavior is still too poorly understood to utilize it for generating droplets of precise size. In this work, we formulate scaling arguments to define dimensionless variables which capture all the parameters that control the droplet breakup process, including the flow rates and the viscosities of the two immiscible fluids, the interfacial tension between the fluids and the numerous dimensions in the flow focusing device. To test these arguments, we perform flow focusing experiments and systematically vary the dimensional parameters. Through these experiments, we confirm the validity of the scaling arguments and find a power law relationship between the normalized droplet size and the capillary number. We demonstrate that droplet formation can be separated into an upstream process for primary droplet formation and a downstream process for thread formation. These results are key to the ability to tune the flow focusing process for specific applications that require monodisperse micron and submicron droplets and particles.</description><identifier>ISSN: 1070-6631</identifier><identifier>EISSN: 1089-7666</identifier><identifier>DOI: 10.1063/1.3081407</identifier><identifier>CODEN: PHFLE6</identifier><language>eng</language><publisher>Melville, NY: American Institute of Physics</publisher><subject>Applied fluid mechanics ; Drops and bubbles ; Exact sciences and technology ; Fluid dynamics ; Fluidics ; Fundamental areas of phenomenology (including applications) ; Nonhomogeneous flows ; Physics</subject><ispartof>Physics of fluids (1994), 2009-03, Vol.21 (3), p.032103-032103-14</ispartof><rights>2009 American Institute of Physics</rights><rights>2009 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c380t-ec3316b248e8538bcb074d7336a994dd3b10048b560e03ee0a24f4a4bcf1cf263</citedby><cites>FETCH-LOGICAL-c380t-ec3316b248e8538bcb074d7336a994dd3b10048b560e03ee0a24f4a4bcf1cf263</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>315,786,790,1566,27957,27958</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=21369992$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Lee, Wingki</creatorcontrib><creatorcontrib>Walker, Lynn M.</creatorcontrib><creatorcontrib>Anna, Shelley L.</creatorcontrib><title>Role of geometry and fluid properties in droplet and thread formation processes in planar flow focusing</title><title>Physics of fluids (1994)</title><description>Droplet formation processes in microfluidic flow focusing devices have been examined previously and some of the key physical mechanisms for droplet formation revealed. However, the underlying physical behavior is still too poorly understood to utilize it for generating droplets of precise size. In this work, we formulate scaling arguments to define dimensionless variables which capture all the parameters that control the droplet breakup process, including the flow rates and the viscosities of the two immiscible fluids, the interfacial tension between the fluids and the numerous dimensions in the flow focusing device. To test these arguments, we perform flow focusing experiments and systematically vary the dimensional parameters. Through these experiments, we confirm the validity of the scaling arguments and find a power law relationship between the normalized droplet size and the capillary number. We demonstrate that droplet formation can be separated into an upstream process for primary droplet formation and a downstream process for thread formation. These results are key to the ability to tune the flow focusing process for specific applications that require monodisperse micron and submicron droplets and particles.</description><subject>Applied fluid mechanics</subject><subject>Drops and bubbles</subject><subject>Exact sciences and technology</subject><subject>Fluid dynamics</subject><subject>Fluidics</subject><subject>Fundamental areas of phenomenology (including applications)</subject><subject>Nonhomogeneous flows</subject><subject>Physics</subject><issn>1070-6631</issn><issn>1089-7666</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><recordid>eNp1kE1LxDAQhoMouK4e_Ae9ePDQddLJpu1FkMUvWBBEzyFNJ2uk25Ski_jvbberN08zwzzzwjyMXXJYcJB4wxcIBReQH7EZh6JMcynl8djnkEqJ_JSdxfgJAFhmcsY2r76hxNtkQ35LffhOdFsnttm5OumC7yj0jmLi2qQepob6_b7_CKQHzIet7p1vR9RQjBPZNbrVYQjxXwNidtG1m3N2YnUT6eJQ5-z94f5t9ZSuXx6fV3fr1GABfUoGkcsqEwUVSywqU0Eu6hxR6rIUdY0VBxBFtZRAgESgM2GFFpWx3NhM4pxdT7km-BgDWdUFt9XhW3FQoyHF1cHQwF5NbKej0Y0NujUu_h1kHGVZltnA3U5cNK7f__t_6KhTeat-dapBF_4ArUt8Iw</recordid><startdate>20090301</startdate><enddate>20090301</enddate><creator>Lee, Wingki</creator><creator>Walker, Lynn M.</creator><creator>Anna, Shelley L.</creator><general>American Institute of Physics</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20090301</creationdate><title>Role of geometry and fluid properties in droplet and thread formation processes in planar flow focusing</title><author>Lee, Wingki ; Walker, Lynn M. ; Anna, Shelley L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c380t-ec3316b248e8538bcb074d7336a994dd3b10048b560e03ee0a24f4a4bcf1cf263</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Applied fluid mechanics</topic><topic>Drops and bubbles</topic><topic>Exact sciences and technology</topic><topic>Fluid dynamics</topic><topic>Fluidics</topic><topic>Fundamental areas of phenomenology (including applications)</topic><topic>Nonhomogeneous flows</topic><topic>Physics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lee, Wingki</creatorcontrib><creatorcontrib>Walker, Lynn M.</creatorcontrib><creatorcontrib>Anna, Shelley L.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><jtitle>Physics of fluids (1994)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lee, Wingki</au><au>Walker, Lynn M.</au><au>Anna, Shelley L.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Role of geometry and fluid properties in droplet and thread formation processes in planar flow focusing</atitle><jtitle>Physics of fluids (1994)</jtitle><date>2009-03-01</date><risdate>2009</risdate><volume>21</volume><issue>3</issue><spage>032103</spage><epage>032103-14</epage><pages>032103-032103-14</pages><issn>1070-6631</issn><eissn>1089-7666</eissn><coden>PHFLE6</coden><abstract>Droplet formation processes in microfluidic flow focusing devices have been examined previously and some of the key physical mechanisms for droplet formation revealed. However, the underlying physical behavior is still too poorly understood to utilize it for generating droplets of precise size. In this work, we formulate scaling arguments to define dimensionless variables which capture all the parameters that control the droplet breakup process, including the flow rates and the viscosities of the two immiscible fluids, the interfacial tension between the fluids and the numerous dimensions in the flow focusing device. To test these arguments, we perform flow focusing experiments and systematically vary the dimensional parameters. Through these experiments, we confirm the validity of the scaling arguments and find a power law relationship between the normalized droplet size and the capillary number. We demonstrate that droplet formation can be separated into an upstream process for primary droplet formation and a downstream process for thread formation. These results are key to the ability to tune the flow focusing process for specific applications that require monodisperse micron and submicron droplets and particles.</abstract><cop>Melville, NY</cop><pub>American Institute of Physics</pub><doi>10.1063/1.3081407</doi></addata></record>
fulltext fulltext
identifier ISSN: 1070-6631
ispartof Physics of fluids (1994), 2009-03, Vol.21 (3), p.032103-032103-14
issn 1070-6631
1089-7666
language eng
recordid cdi_crossref_primary_10_1063_1_3081407
source American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list); AIP Digital Archive
subjects Applied fluid mechanics
Drops and bubbles
Exact sciences and technology
Fluid dynamics
Fluidics
Fundamental areas of phenomenology (including applications)
Nonhomogeneous flows
Physics
title Role of geometry and fluid properties in droplet and thread formation processes in planar flow focusing
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-09-21T20%3A12%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-scitation_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Role%20of%20geometry%20and%20fluid%20properties%20in%20droplet%20and%20thread%20formation%20processes%20in%20planar%20flow%20focusing&rft.jtitle=Physics%20of%20fluids%20(1994)&rft.au=Lee,%20Wingki&rft.date=2009-03-01&rft.volume=21&rft.issue=3&rft.spage=032103&rft.epage=032103-14&rft.pages=032103-032103-14&rft.issn=1070-6631&rft.eissn=1089-7666&rft.coden=PHFLE6&rft_id=info:doi/10.1063/1.3081407&rft_dat=%3Cscitation_cross%3Escitation_primary_10_1063_1_3081407Role_of_geometry_and%3C/scitation_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c380t-ec3316b248e8538bcb074d7336a994dd3b10048b560e03ee0a24f4a4bcf1cf263%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true