Loading…

Optimal roughness for minimal adhesion

Roughness has a significant affect on adhesion. The authors used a single-asperity model to describe a smooth tip in contact with a rough surface and predicted that an optimal size of asperity yields a minimum of adhesion. Experimentally, adhesive forces on silicon wafers with varying roughness were...

Full description

Saved in:
Bibliographic Details
Published in:Applied physics letters 2007-07, Vol.91 (4), p.043107-043107-3
Main Authors: Liu, D.-L., Martin, J., Burnham, N. A.
Format: Article
Language:English
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c385t-acc091a70587a994a20ee8ecc295e8ce79d14da9980c8ad42b880caf2ff322c43
cites cdi_FETCH-LOGICAL-c385t-acc091a70587a994a20ee8ecc295e8ce79d14da9980c8ad42b880caf2ff322c43
container_end_page 043107-3
container_issue 4
container_start_page 043107
container_title Applied physics letters
container_volume 91
creator Liu, D.-L.
Martin, J.
Burnham, N. A.
description Roughness has a significant affect on adhesion. The authors used a single-asperity model to describe a smooth tip in contact with a rough surface and predicted that an optimal size of asperity yields a minimum of adhesion. Experimentally, adhesive forces on silicon wafers with varying roughness were measured using atomic-force-microscopy cantilevers with varying tip radii. It was found that minima do exist, and for all tip radii, the adhesion falls significantly for roughness greater than 1 - 2 nm and drops at higher roughness for larger tips. This work should help minimize stiction in microelectromechanical systems and progress the understanding of nanoscale-contact mechanics.
doi_str_mv 10.1063/1.2763981
format article
fullrecord <record><control><sourceid>scitation_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1063_1_2763981</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>apl</sourcerecordid><originalsourceid>FETCH-LOGICAL-c385t-acc091a70587a994a20ee8ecc295e8ce79d14da9980c8ad42b880caf2ff322c43</originalsourceid><addsrcrecordid>eNp1j8tKAzEUhoMoOFYXvsGsBBep5ySTSbIRpHiDQjftOsRMYkfaSUnGhW9vtIM7V-f2cfg_Qq4R5ggtv8M5ky3XCk9IhSAl5YjqlFQAwGmrBZ6Ti5w_yigY5xW5WR3Gfm93dYqf79vB51yHmOp9P_xubbf1uY_DJTkLdpf91VRnZPP0uF680OXq-XXxsKSOKzFS6xxotBKEklbrxjLwXnnnmBZeOS91h01XLgqcsl3D3lTpbGAhcMZcw2fk9vjXpZhz8sEcUgmSvgyC-RE0aCbBwt4f2ez60Y4l5f_wZGn-LE2I_BstFVfn</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Optimal roughness for minimal adhesion</title><source>American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list)</source><source>AIP Journals (American Institute of Physics)</source><creator>Liu, D.-L. ; Martin, J. ; Burnham, N. A.</creator><creatorcontrib>Liu, D.-L. ; Martin, J. ; Burnham, N. A.</creatorcontrib><description>Roughness has a significant affect on adhesion. The authors used a single-asperity model to describe a smooth tip in contact with a rough surface and predicted that an optimal size of asperity yields a minimum of adhesion. Experimentally, adhesive forces on silicon wafers with varying roughness were measured using atomic-force-microscopy cantilevers with varying tip radii. It was found that minima do exist, and for all tip radii, the adhesion falls significantly for roughness greater than 1 - 2 nm and drops at higher roughness for larger tips. This work should help minimize stiction in microelectromechanical systems and progress the understanding of nanoscale-contact mechanics.</description><identifier>ISSN: 0003-6951</identifier><identifier>EISSN: 1077-3118</identifier><identifier>DOI: 10.1063/1.2763981</identifier><identifier>CODEN: APPLAB</identifier><language>eng</language><publisher>American Institute of Physics</publisher><ispartof>Applied physics letters, 2007-07, Vol.91 (4), p.043107-043107-3</ispartof><rights>2007 American Institute of Physics</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c385t-acc091a70587a994a20ee8ecc295e8ce79d14da9980c8ad42b880caf2ff322c43</citedby><cites>FETCH-LOGICAL-c385t-acc091a70587a994a20ee8ecc295e8ce79d14da9980c8ad42b880caf2ff322c43</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/apl/article-lookup/doi/10.1063/1.2763981$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>315,786,788,790,801,27957,27958,76741</link.rule.ids></links><search><creatorcontrib>Liu, D.-L.</creatorcontrib><creatorcontrib>Martin, J.</creatorcontrib><creatorcontrib>Burnham, N. A.</creatorcontrib><title>Optimal roughness for minimal adhesion</title><title>Applied physics letters</title><description>Roughness has a significant affect on adhesion. The authors used a single-asperity model to describe a smooth tip in contact with a rough surface and predicted that an optimal size of asperity yields a minimum of adhesion. Experimentally, adhesive forces on silicon wafers with varying roughness were measured using atomic-force-microscopy cantilevers with varying tip radii. It was found that minima do exist, and for all tip radii, the adhesion falls significantly for roughness greater than 1 - 2 nm and drops at higher roughness for larger tips. This work should help minimize stiction in microelectromechanical systems and progress the understanding of nanoscale-contact mechanics.</description><issn>0003-6951</issn><issn>1077-3118</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><recordid>eNp1j8tKAzEUhoMoOFYXvsGsBBep5ySTSbIRpHiDQjftOsRMYkfaSUnGhW9vtIM7V-f2cfg_Qq4R5ggtv8M5ky3XCk9IhSAl5YjqlFQAwGmrBZ6Ti5w_yigY5xW5WR3Gfm93dYqf79vB51yHmOp9P_xubbf1uY_DJTkLdpf91VRnZPP0uF680OXq-XXxsKSOKzFS6xxotBKEklbrxjLwXnnnmBZeOS91h01XLgqcsl3D3lTpbGAhcMZcw2fk9vjXpZhz8sEcUgmSvgyC-RE0aCbBwt4f2ez60Y4l5f_wZGn-LE2I_BstFVfn</recordid><startdate>20070723</startdate><enddate>20070723</enddate><creator>Liu, D.-L.</creator><creator>Martin, J.</creator><creator>Burnham, N. A.</creator><general>American Institute of Physics</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20070723</creationdate><title>Optimal roughness for minimal adhesion</title><author>Liu, D.-L. ; Martin, J. ; Burnham, N. A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c385t-acc091a70587a994a20ee8ecc295e8ce79d14da9980c8ad42b880caf2ff322c43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, D.-L.</creatorcontrib><creatorcontrib>Martin, J.</creatorcontrib><creatorcontrib>Burnham, N. A.</creatorcontrib><collection>CrossRef</collection><jtitle>Applied physics letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liu, D.-L.</au><au>Martin, J.</au><au>Burnham, N. A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Optimal roughness for minimal adhesion</atitle><jtitle>Applied physics letters</jtitle><date>2007-07-23</date><risdate>2007</risdate><volume>91</volume><issue>4</issue><spage>043107</spage><epage>043107-3</epage><pages>043107-043107-3</pages><issn>0003-6951</issn><eissn>1077-3118</eissn><coden>APPLAB</coden><abstract>Roughness has a significant affect on adhesion. The authors used a single-asperity model to describe a smooth tip in contact with a rough surface and predicted that an optimal size of asperity yields a minimum of adhesion. Experimentally, adhesive forces on silicon wafers with varying roughness were measured using atomic-force-microscopy cantilevers with varying tip radii. It was found that minima do exist, and for all tip radii, the adhesion falls significantly for roughness greater than 1 - 2 nm and drops at higher roughness for larger tips. This work should help minimize stiction in microelectromechanical systems and progress the understanding of nanoscale-contact mechanics.</abstract><pub>American Institute of Physics</pub><doi>10.1063/1.2763981</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0003-6951
ispartof Applied physics letters, 2007-07, Vol.91 (4), p.043107-043107-3
issn 0003-6951
1077-3118
language eng
recordid cdi_crossref_primary_10_1063_1_2763981
source American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list); AIP Journals (American Institute of Physics)
title Optimal roughness for minimal adhesion
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-09-21T20%3A12%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-scitation_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Optimal%20roughness%20for%20minimal%20adhesion&rft.jtitle=Applied%20physics%20letters&rft.au=Liu,%20D.-L.&rft.date=2007-07-23&rft.volume=91&rft.issue=4&rft.spage=043107&rft.epage=043107-3&rft.pages=043107-043107-3&rft.issn=0003-6951&rft.eissn=1077-3118&rft.coden=APPLAB&rft_id=info:doi/10.1063/1.2763981&rft_dat=%3Cscitation_cross%3Eapl%3C/scitation_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c385t-acc091a70587a994a20ee8ecc295e8ce79d14da9980c8ad42b880caf2ff322c43%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true