Loading…

Three-dimensional wavelength-scale confinement in quantum dot microcavity light-emitting diodes

We introduce a microcavity light-emitting diode (LED) structure that uses submicrometer oxide aperture and a quantum dot active region to achieve strong three-dimensional confinement of both the carrier distribution and the optical field. Light-current curves show optical emission for devices as sma...

Full description

Saved in:
Bibliographic Details
Published in:Applied physics letters 2004-09, Vol.85 (12), p.2178-2180
Main Authors: Zinoni, C., Alloing, B., Paranthoën, C., Fiore, A.
Format: Article
Language:English
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c317t-d17a5c37bfcaa33ff4c1d8c67586df4753a851c6631bc67a7246042722e9ddf73
cites cdi_FETCH-LOGICAL-c317t-d17a5c37bfcaa33ff4c1d8c67586df4753a851c6631bc67a7246042722e9ddf73
container_end_page 2180
container_issue 12
container_start_page 2178
container_title Applied physics letters
container_volume 85
creator Zinoni, C.
Alloing, B.
Paranthoën, C.
Fiore, A.
description We introduce a microcavity light-emitting diode (LED) structure that uses submicrometer oxide aperture and a quantum dot active region to achieve strong three-dimensional confinement of both the carrier distribution and the optical field. Light-current curves show optical emission for devices as small as 400 nm in diameter. Spectroscopy on electrically pumped LEDs, with apertures ranging from 2.5 down to 0.7 μ m , show several spectral lines corresponding to cavity modes. A strong blueshift of the resonant modes for smaller apertures demonstrates the role of the oxide aperture in confining laterally the optical wave in a volume comparable to ( λ ∕ n ) 3 . Due to the high quality factors and low mode volumes, the devices could be good candidates for the demonstration of the Purcell effect under electrical pumping.
doi_str_mv 10.1063/1.1791341
format article
fullrecord <record><control><sourceid>scitation_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1063_1_1791341</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>apl</sourcerecordid><originalsourceid>FETCH-LOGICAL-c317t-d17a5c37bfcaa33ff4c1d8c67586df4753a851c6631bc67a7246042722e9ddf73</originalsourceid><addsrcrecordid>eNp1kE1LAzEQhoMoWKsH_0GuHlIzm91kexGkaBUKXuo5TPPRRnazuklb-u9dbQ9ePA0zPAzv-xByC3wCXIp7mICagijhjIyAK8UEQH1ORpxzweS0gktyldLHsFaFECOil5veOWZD62IKXcSG7nHnGhfXecOSwcZR00UfohuITEOkX1uMedtS22XaBtN3BnchH2gT1pvMXBtyDnFNbeisS9fkwmOT3M1pjsn789Ny9sIWb_PX2eOCGQEqMwsKKyPUyhtEIbwvDdjaSFXV0vpSVQLrCoyUAlbDFVVRSl4Wqijc1FqvxJjcHf8OeVLqndeffWixP2jg-seMBn0yM7APRzaZkDEPrf-Hf_XoP3r0HsU3ZRRtQg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Three-dimensional wavelength-scale confinement in quantum dot microcavity light-emitting diodes</title><source>American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list)</source><source>American Institute of Physics</source><creator>Zinoni, C. ; Alloing, B. ; Paranthoën, C. ; Fiore, A.</creator><creatorcontrib>Zinoni, C. ; Alloing, B. ; Paranthoën, C. ; Fiore, A.</creatorcontrib><description>We introduce a microcavity light-emitting diode (LED) structure that uses submicrometer oxide aperture and a quantum dot active region to achieve strong three-dimensional confinement of both the carrier distribution and the optical field. Light-current curves show optical emission for devices as small as 400 nm in diameter. Spectroscopy on electrically pumped LEDs, with apertures ranging from 2.5 down to 0.7 μ m , show several spectral lines corresponding to cavity modes. A strong blueshift of the resonant modes for smaller apertures demonstrates the role of the oxide aperture in confining laterally the optical wave in a volume comparable to ( λ ∕ n ) 3 . Due to the high quality factors and low mode volumes, the devices could be good candidates for the demonstration of the Purcell effect under electrical pumping.</description><identifier>ISSN: 0003-6951</identifier><identifier>EISSN: 1077-3118</identifier><identifier>DOI: 10.1063/1.1791341</identifier><identifier>CODEN: APPLAB</identifier><language>eng</language><publisher>American Institute of Physics</publisher><ispartof>Applied physics letters, 2004-09, Vol.85 (12), p.2178-2180</ispartof><rights>2004 American Institute of Physics</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c317t-d17a5c37bfcaa33ff4c1d8c67586df4753a851c6631bc67a7246042722e9ddf73</citedby><cites>FETCH-LOGICAL-c317t-d17a5c37bfcaa33ff4c1d8c67586df4753a851c6631bc67a7246042722e9ddf73</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>315,786,788,790,27957,27958</link.rule.ids></links><search><creatorcontrib>Zinoni, C.</creatorcontrib><creatorcontrib>Alloing, B.</creatorcontrib><creatorcontrib>Paranthoën, C.</creatorcontrib><creatorcontrib>Fiore, A.</creatorcontrib><title>Three-dimensional wavelength-scale confinement in quantum dot microcavity light-emitting diodes</title><title>Applied physics letters</title><description>We introduce a microcavity light-emitting diode (LED) structure that uses submicrometer oxide aperture and a quantum dot active region to achieve strong three-dimensional confinement of both the carrier distribution and the optical field. Light-current curves show optical emission for devices as small as 400 nm in diameter. Spectroscopy on electrically pumped LEDs, with apertures ranging from 2.5 down to 0.7 μ m , show several spectral lines corresponding to cavity modes. A strong blueshift of the resonant modes for smaller apertures demonstrates the role of the oxide aperture in confining laterally the optical wave in a volume comparable to ( λ ∕ n ) 3 . Due to the high quality factors and low mode volumes, the devices could be good candidates for the demonstration of the Purcell effect under electrical pumping.</description><issn>0003-6951</issn><issn>1077-3118</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2004</creationdate><recordtype>article</recordtype><recordid>eNp1kE1LAzEQhoMoWKsH_0GuHlIzm91kexGkaBUKXuo5TPPRRnazuklb-u9dbQ9ePA0zPAzv-xByC3wCXIp7mICagijhjIyAK8UEQH1ORpxzweS0gktyldLHsFaFECOil5veOWZD62IKXcSG7nHnGhfXecOSwcZR00UfohuITEOkX1uMedtS22XaBtN3BnchH2gT1pvMXBtyDnFNbeisS9fkwmOT3M1pjsn789Ny9sIWb_PX2eOCGQEqMwsKKyPUyhtEIbwvDdjaSFXV0vpSVQLrCoyUAlbDFVVRSl4Wqijc1FqvxJjcHf8OeVLqndeffWixP2jg-seMBn0yM7APRzaZkDEPrf-Hf_XoP3r0HsU3ZRRtQg</recordid><startdate>20040920</startdate><enddate>20040920</enddate><creator>Zinoni, C.</creator><creator>Alloing, B.</creator><creator>Paranthoën, C.</creator><creator>Fiore, A.</creator><general>American Institute of Physics</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20040920</creationdate><title>Three-dimensional wavelength-scale confinement in quantum dot microcavity light-emitting diodes</title><author>Zinoni, C. ; Alloing, B. ; Paranthoën, C. ; Fiore, A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c317t-d17a5c37bfcaa33ff4c1d8c67586df4753a851c6631bc67a7246042722e9ddf73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2004</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zinoni, C.</creatorcontrib><creatorcontrib>Alloing, B.</creatorcontrib><creatorcontrib>Paranthoën, C.</creatorcontrib><creatorcontrib>Fiore, A.</creatorcontrib><collection>CrossRef</collection><jtitle>Applied physics letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zinoni, C.</au><au>Alloing, B.</au><au>Paranthoën, C.</au><au>Fiore, A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Three-dimensional wavelength-scale confinement in quantum dot microcavity light-emitting diodes</atitle><jtitle>Applied physics letters</jtitle><date>2004-09-20</date><risdate>2004</risdate><volume>85</volume><issue>12</issue><spage>2178</spage><epage>2180</epage><pages>2178-2180</pages><issn>0003-6951</issn><eissn>1077-3118</eissn><coden>APPLAB</coden><abstract>We introduce a microcavity light-emitting diode (LED) structure that uses submicrometer oxide aperture and a quantum dot active region to achieve strong three-dimensional confinement of both the carrier distribution and the optical field. Light-current curves show optical emission for devices as small as 400 nm in diameter. Spectroscopy on electrically pumped LEDs, with apertures ranging from 2.5 down to 0.7 μ m , show several spectral lines corresponding to cavity modes. A strong blueshift of the resonant modes for smaller apertures demonstrates the role of the oxide aperture in confining laterally the optical wave in a volume comparable to ( λ ∕ n ) 3 . Due to the high quality factors and low mode volumes, the devices could be good candidates for the demonstration of the Purcell effect under electrical pumping.</abstract><pub>American Institute of Physics</pub><doi>10.1063/1.1791341</doi><tpages>3</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0003-6951
ispartof Applied physics letters, 2004-09, Vol.85 (12), p.2178-2180
issn 0003-6951
1077-3118
language eng
recordid cdi_crossref_primary_10_1063_1_1791341
source American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list); American Institute of Physics
title Three-dimensional wavelength-scale confinement in quantum dot microcavity light-emitting diodes
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-09-22T20%3A39%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-scitation_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Three-dimensional%20wavelength-scale%20confinement%20in%20quantum%20dot%20microcavity%20light-emitting%20diodes&rft.jtitle=Applied%20physics%20letters&rft.au=Zinoni,%20C.&rft.date=2004-09-20&rft.volume=85&rft.issue=12&rft.spage=2178&rft.epage=2180&rft.pages=2178-2180&rft.issn=0003-6951&rft.eissn=1077-3118&rft.coden=APPLAB&rft_id=info:doi/10.1063/1.1791341&rft_dat=%3Cscitation_cross%3Eapl%3C/scitation_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c317t-d17a5c37bfcaa33ff4c1d8c67586df4753a851c6631bc67a7246042722e9ddf73%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true