Loading…

Metal content of multicrystalline silicon for solar cells and its impact on minority carrier diffusion length

Instrumental neutron activation analysis was performed to determine the transition metal content in three types of silicon material for cost-efficient solar cells: Astropower silicon-film sheet material, Baysix cast material, and edge-defined film-fed growth (EFG) multicrystalline silicon ribbon. Th...

Full description

Saved in:
Bibliographic Details
Published in:Journal of applied physics 2003-11, Vol.94 (10), p.6552-6559
Main Authors: Istratov, A. A., Buonassisi, T., McDonald, R. J., Smith, A. R., Schindler, R., Rand, J. A., Kalejs, J. P., Weber, E. R.
Format: Article
Language:English
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c293t-9f24b4e59b6f3924999527cff2d08080c6253c6a78dd4c123db825ef0f6145333
cites cdi_FETCH-LOGICAL-c293t-9f24b4e59b6f3924999527cff2d08080c6253c6a78dd4c123db825ef0f6145333
container_end_page 6559
container_issue 10
container_start_page 6552
container_title Journal of applied physics
container_volume 94
creator Istratov, A. A.
Buonassisi, T.
McDonald, R. J.
Smith, A. R.
Schindler, R.
Rand, J. A.
Kalejs, J. P.
Weber, E. R.
description Instrumental neutron activation analysis was performed to determine the transition metal content in three types of silicon material for cost-efficient solar cells: Astropower silicon-film sheet material, Baysix cast material, and edge-defined film-fed growth (EFG) multicrystalline silicon ribbon. The dominant metal impurities were found to be Fe (6×1014 cm−3 to 1.5×1016 cm−3, depending on the material), Ni (up to 1.8×1015 cm−3), Co (1.7×1012 cm−3 to 9.7×1013 cm−3), Mo (6.4×1012 cm−3 to 4.6×1013 cm−3), and Cr (1.7×1012 cm−3 to 1.8×1015 cm−3). Copper was also detected (less than 2.4×1014 cm−3), but its concentration could not be accurately determined because of a very short decay time of the corresponding radioactive isotope. In all samples, the metal contamination level would be sufficient to degrade the minority carrier diffusion length to less than a micron, if all metals were in an interstitial or substitutional state. This is a much lower value than the actual measured diffusion length of these samples. Therefore, most likely, the metals either formed clusters or precipitates with relatively low recombination activity or are very inhomogeneously distributed within the samples. No significant difference was observed between the metal content of the high and low lifetime areas of each material. X-ray microprobe fluorescence spectrometry mapping of Astropower mc-Si samples confirmed that transition metals formed agglomerates both at grain boundaries and within the grains. It is concluded that the impact of metals on solar cell efficiency is determined not only by the total metal concentration, but also by the distribution of metals within the grains and the chemical composition of the clusters formed by the metals.
doi_str_mv 10.1063/1.1618912
format article
fullrecord <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_1063_1_1618912</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1063_1_1618912</sourcerecordid><originalsourceid>FETCH-LOGICAL-c293t-9f24b4e59b6f3924999527cff2d08080c6253c6a78dd4c123db825ef0f6145333</originalsourceid><addsrcrecordid>eNotkE1PxCAYhInRxLp68B-8Vw9deaG0cDQbv5I1XvTcUAqKoXQD7KH_3ho3c5hknswchpBbpFukLb_HLbYoFbIzUiGVqu6EoOekopRhLVWnLslVzj-UIkquKjK92aIDmDkWGwvMDqZjKN6kJa958NFC9sGvHNycIM9BJzA2hAw6juBLBj8dtFmrESYf5-TLAkan5G2C0Tt3zH5Fwcav8n1NLpwO2d6cfEM-nx4_di_1_v35dfewrw1TvNTKsWZorFBD67hijVJKsM44x0YqV5mWCW5a3clxbAwyPg6SCeuoa7ERnPMNufvfNWnOOVnXH5KfdFp6pP3fTz32p5_4L7pwW9w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Metal content of multicrystalline silicon for solar cells and its impact on minority carrier diffusion length</title><source>American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list)</source><creator>Istratov, A. A. ; Buonassisi, T. ; McDonald, R. J. ; Smith, A. R. ; Schindler, R. ; Rand, J. A. ; Kalejs, J. P. ; Weber, E. R.</creator><creatorcontrib>Istratov, A. A. ; Buonassisi, T. ; McDonald, R. J. ; Smith, A. R. ; Schindler, R. ; Rand, J. A. ; Kalejs, J. P. ; Weber, E. R.</creatorcontrib><description>Instrumental neutron activation analysis was performed to determine the transition metal content in three types of silicon material for cost-efficient solar cells: Astropower silicon-film sheet material, Baysix cast material, and edge-defined film-fed growth (EFG) multicrystalline silicon ribbon. The dominant metal impurities were found to be Fe (6×1014 cm−3 to 1.5×1016 cm−3, depending on the material), Ni (up to 1.8×1015 cm−3), Co (1.7×1012 cm−3 to 9.7×1013 cm−3), Mo (6.4×1012 cm−3 to 4.6×1013 cm−3), and Cr (1.7×1012 cm−3 to 1.8×1015 cm−3). Copper was also detected (less than 2.4×1014 cm−3), but its concentration could not be accurately determined because of a very short decay time of the corresponding radioactive isotope. In all samples, the metal contamination level would be sufficient to degrade the minority carrier diffusion length to less than a micron, if all metals were in an interstitial or substitutional state. This is a much lower value than the actual measured diffusion length of these samples. Therefore, most likely, the metals either formed clusters or precipitates with relatively low recombination activity or are very inhomogeneously distributed within the samples. No significant difference was observed between the metal content of the high and low lifetime areas of each material. X-ray microprobe fluorescence spectrometry mapping of Astropower mc-Si samples confirmed that transition metals formed agglomerates both at grain boundaries and within the grains. It is concluded that the impact of metals on solar cell efficiency is determined not only by the total metal concentration, but also by the distribution of metals within the grains and the chemical composition of the clusters formed by the metals.</description><identifier>ISSN: 0021-8979</identifier><identifier>EISSN: 1089-7550</identifier><identifier>DOI: 10.1063/1.1618912</identifier><language>eng</language><ispartof>Journal of applied physics, 2003-11, Vol.94 (10), p.6552-6559</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c293t-9f24b4e59b6f3924999527cff2d08080c6253c6a78dd4c123db825ef0f6145333</citedby><cites>FETCH-LOGICAL-c293t-9f24b4e59b6f3924999527cff2d08080c6253c6a78dd4c123db825ef0f6145333</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>315,786,790,27957,27958</link.rule.ids></links><search><creatorcontrib>Istratov, A. A.</creatorcontrib><creatorcontrib>Buonassisi, T.</creatorcontrib><creatorcontrib>McDonald, R. J.</creatorcontrib><creatorcontrib>Smith, A. R.</creatorcontrib><creatorcontrib>Schindler, R.</creatorcontrib><creatorcontrib>Rand, J. A.</creatorcontrib><creatorcontrib>Kalejs, J. P.</creatorcontrib><creatorcontrib>Weber, E. R.</creatorcontrib><title>Metal content of multicrystalline silicon for solar cells and its impact on minority carrier diffusion length</title><title>Journal of applied physics</title><description>Instrumental neutron activation analysis was performed to determine the transition metal content in three types of silicon material for cost-efficient solar cells: Astropower silicon-film sheet material, Baysix cast material, and edge-defined film-fed growth (EFG) multicrystalline silicon ribbon. The dominant metal impurities were found to be Fe (6×1014 cm−3 to 1.5×1016 cm−3, depending on the material), Ni (up to 1.8×1015 cm−3), Co (1.7×1012 cm−3 to 9.7×1013 cm−3), Mo (6.4×1012 cm−3 to 4.6×1013 cm−3), and Cr (1.7×1012 cm−3 to 1.8×1015 cm−3). Copper was also detected (less than 2.4×1014 cm−3), but its concentration could not be accurately determined because of a very short decay time of the corresponding radioactive isotope. In all samples, the metal contamination level would be sufficient to degrade the minority carrier diffusion length to less than a micron, if all metals were in an interstitial or substitutional state. This is a much lower value than the actual measured diffusion length of these samples. Therefore, most likely, the metals either formed clusters or precipitates with relatively low recombination activity or are very inhomogeneously distributed within the samples. No significant difference was observed between the metal content of the high and low lifetime areas of each material. X-ray microprobe fluorescence spectrometry mapping of Astropower mc-Si samples confirmed that transition metals formed agglomerates both at grain boundaries and within the grains. It is concluded that the impact of metals on solar cell efficiency is determined not only by the total metal concentration, but also by the distribution of metals within the grains and the chemical composition of the clusters formed by the metals.</description><issn>0021-8979</issn><issn>1089-7550</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2003</creationdate><recordtype>article</recordtype><recordid>eNotkE1PxCAYhInRxLp68B-8Vw9deaG0cDQbv5I1XvTcUAqKoXQD7KH_3ho3c5hknswchpBbpFukLb_HLbYoFbIzUiGVqu6EoOekopRhLVWnLslVzj-UIkquKjK92aIDmDkWGwvMDqZjKN6kJa958NFC9sGvHNycIM9BJzA2hAw6juBLBj8dtFmrESYf5-TLAkan5G2C0Tt3zH5Fwcav8n1NLpwO2d6cfEM-nx4_di_1_v35dfewrw1TvNTKsWZorFBD67hijVJKsM44x0YqV5mWCW5a3clxbAwyPg6SCeuoa7ERnPMNufvfNWnOOVnXH5KfdFp6pP3fTz32p5_4L7pwW9w</recordid><startdate>20031115</startdate><enddate>20031115</enddate><creator>Istratov, A. A.</creator><creator>Buonassisi, T.</creator><creator>McDonald, R. J.</creator><creator>Smith, A. R.</creator><creator>Schindler, R.</creator><creator>Rand, J. A.</creator><creator>Kalejs, J. P.</creator><creator>Weber, E. R.</creator><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20031115</creationdate><title>Metal content of multicrystalline silicon for solar cells and its impact on minority carrier diffusion length</title><author>Istratov, A. A. ; Buonassisi, T. ; McDonald, R. J. ; Smith, A. R. ; Schindler, R. ; Rand, J. A. ; Kalejs, J. P. ; Weber, E. R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c293t-9f24b4e59b6f3924999527cff2d08080c6253c6a78dd4c123db825ef0f6145333</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2003</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Istratov, A. A.</creatorcontrib><creatorcontrib>Buonassisi, T.</creatorcontrib><creatorcontrib>McDonald, R. J.</creatorcontrib><creatorcontrib>Smith, A. R.</creatorcontrib><creatorcontrib>Schindler, R.</creatorcontrib><creatorcontrib>Rand, J. A.</creatorcontrib><creatorcontrib>Kalejs, J. P.</creatorcontrib><creatorcontrib>Weber, E. R.</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of applied physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Istratov, A. A.</au><au>Buonassisi, T.</au><au>McDonald, R. J.</au><au>Smith, A. R.</au><au>Schindler, R.</au><au>Rand, J. A.</au><au>Kalejs, J. P.</au><au>Weber, E. R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Metal content of multicrystalline silicon for solar cells and its impact on minority carrier diffusion length</atitle><jtitle>Journal of applied physics</jtitle><date>2003-11-15</date><risdate>2003</risdate><volume>94</volume><issue>10</issue><spage>6552</spage><epage>6559</epage><pages>6552-6559</pages><issn>0021-8979</issn><eissn>1089-7550</eissn><abstract>Instrumental neutron activation analysis was performed to determine the transition metal content in three types of silicon material for cost-efficient solar cells: Astropower silicon-film sheet material, Baysix cast material, and edge-defined film-fed growth (EFG) multicrystalline silicon ribbon. The dominant metal impurities were found to be Fe (6×1014 cm−3 to 1.5×1016 cm−3, depending on the material), Ni (up to 1.8×1015 cm−3), Co (1.7×1012 cm−3 to 9.7×1013 cm−3), Mo (6.4×1012 cm−3 to 4.6×1013 cm−3), and Cr (1.7×1012 cm−3 to 1.8×1015 cm−3). Copper was also detected (less than 2.4×1014 cm−3), but its concentration could not be accurately determined because of a very short decay time of the corresponding radioactive isotope. In all samples, the metal contamination level would be sufficient to degrade the minority carrier diffusion length to less than a micron, if all metals were in an interstitial or substitutional state. This is a much lower value than the actual measured diffusion length of these samples. Therefore, most likely, the metals either formed clusters or precipitates with relatively low recombination activity or are very inhomogeneously distributed within the samples. No significant difference was observed between the metal content of the high and low lifetime areas of each material. X-ray microprobe fluorescence spectrometry mapping of Astropower mc-Si samples confirmed that transition metals formed agglomerates both at grain boundaries and within the grains. It is concluded that the impact of metals on solar cell efficiency is determined not only by the total metal concentration, but also by the distribution of metals within the grains and the chemical composition of the clusters formed by the metals.</abstract><doi>10.1063/1.1618912</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0021-8979
ispartof Journal of applied physics, 2003-11, Vol.94 (10), p.6552-6559
issn 0021-8979
1089-7550
language eng
recordid cdi_crossref_primary_10_1063_1_1618912
source American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list)
title Metal content of multicrystalline silicon for solar cells and its impact on minority carrier diffusion length
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-09-21T07%3A28%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Metal%20content%20of%20multicrystalline%20silicon%20for%20solar%20cells%20and%20its%20impact%20on%20minority%20carrier%20diffusion%20length&rft.jtitle=Journal%20of%20applied%20physics&rft.au=Istratov,%20A.%20A.&rft.date=2003-11-15&rft.volume=94&rft.issue=10&rft.spage=6552&rft.epage=6559&rft.pages=6552-6559&rft.issn=0021-8979&rft.eissn=1089-7550&rft_id=info:doi/10.1063/1.1618912&rft_dat=%3Ccrossref%3E10_1063_1_1618912%3C/crossref%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c293t-9f24b4e59b6f3924999527cff2d08080c6253c6a78dd4c123db825ef0f6145333%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true