Loading…

Thermoresponsive properties of polyacrylamides in physiological solutions

Polymer solutions with a lower critical solution temperature (LCST) undergo reversible phase separation when heated above their cloud point temperature ( T CP or CPT). As such, they have been proposed for a wide range of biomedical applications, from injectable drug depots to switchable coatings for...

Full description

Saved in:
Bibliographic Details
Published in:Polymer chemistry 2021-09, Vol.12 (35), p.577-584
Main Authors: Kolouchová, Kristýna, Lobaz, Volodymyr, Beneš, Hynek, de la Rosa, Victor R, Babuka, David, Švec, Pavel, ernoch, Peter, Hrubý, Martin, Hoogenboom, Richard, Št pánek, Petr, Groborz, Ond ej
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c383t-c314a9fc43b7d3cdbb6d11ee5181bbc283b1196d5d17fb75b0c3087a542c537b3
cites cdi_FETCH-LOGICAL-c383t-c314a9fc43b7d3cdbb6d11ee5181bbc283b1196d5d17fb75b0c3087a542c537b3
container_end_page 584
container_issue 35
container_start_page 577
container_title Polymer chemistry
container_volume 12
creator Kolouchová, Kristýna
Lobaz, Volodymyr
Beneš, Hynek
de la Rosa, Victor R
Babuka, David
Švec, Pavel
ernoch, Peter
Hrubý, Martin
Hoogenboom, Richard
Št pánek, Petr
Groborz, Ond ej
description Polymer solutions with a lower critical solution temperature (LCST) undergo reversible phase separation when heated above their cloud point temperature ( T CP or CPT). As such, they have been proposed for a wide range of biomedical applications, from injectable drug depots to switchable coatings for cell adhesion. However, in systematic studies, the T CP of these thermoresponsive polymers has been mostly measured in non-physiological solutions, thereby hindering the development of their medicinal applications. Here, we analysed the thermoresponsive properties of four acrylamide-based polymers with LCST, namely poly[( N -2,2-difluoroethyl)acrylamide] ( pDFEA ), poly[( N -isopropyl)acrylamide] ( pNIPAM ), poly[( N , N -diethyl)acrylamide] ( pDEA ), and poly[( N -acryloyl)pyrrolidine] ( pAP ). As shown by turbidimetry, their T CP in phosphate saline buffer (PBS) and foetal bovine serum (FBS) were consistently lower than those reported in the literature, typically assessed in pure water, even when using the same setup. In addition, these physiological solutions affected the variation of T CP as a function of polymer concentration (1.25 to 10.0 mg mL −1 ) and molar mass (20 to 50 kg mol −1 ). As shown by isothermal calorimetry, interactions between proteins in FBS and polymer aggregates were predominantly exothermic, which indicates that protein-polymer complexes are formed through enthalpically driven processes. In conclusion, the T CP of thermoresponsive polymers strongly depends on solvent composition and therefore should be measured under physiological conditions for future medicinal applications. We show that the cloud point temperature ( T CP ) of thermoresponsive polyacrylamides is considerably lower in physiologically relevant solvents (phosphate-buffered saline, serum) than in pure water. This decrease of T CP may be critical for some biomedical applications.
doi_str_mv 10.1039/d1py00843a
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1039_D1PY00843A</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2572117228</sourcerecordid><originalsourceid>FETCH-LOGICAL-c383t-c314a9fc43b7d3cdbb6d11ee5181bbc283b1196d5d17fb75b0c3087a542c537b3</originalsourceid><addsrcrecordid>eNpFkE1LAzEQhoMoWGov3oUFb0I1k2w2u8dSvwoFPdSDpyVfa1N2NzHZCvvvjVbqHGaG4Zl3hhehS8C3gGl1p8GPGJc5FSdoApxV86oqyOmxZ_k5msW4wyko5IQWE7TabE3oXDDRuz7aL5P54LwJgzUxc03mXTsKFcZWdFanke0zvx2jda37sEq0WXTtfrBp9wKdNaKNZvZXp-jt8WGzfJ6vX55Wy8V6rmhJh5QhF1Wjciq5pkpLWWgAYxiUIKUiJZUAVaGZBt5IziRWFJdcsJwoRrmkU3R90E2Pfu5NHOqd24c-nawJ4wSAkyQyRTcHSgUXYzBN7YPtRBhrwPWPW_U9vL7_urVI8NUBDlEduX836TeNwWgZ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2572117228</pqid></control><display><type>article</type><title>Thermoresponsive properties of polyacrylamides in physiological solutions</title><source>Royal Society of Chemistry:Jisc Collections:Royal Society of Chemistry Read and Publish 2022-2024 (reading list)</source><creator>Kolouchová, Kristýna ; Lobaz, Volodymyr ; Beneš, Hynek ; de la Rosa, Victor R ; Babuka, David ; Švec, Pavel ; ernoch, Peter ; Hrubý, Martin ; Hoogenboom, Richard ; Št pánek, Petr ; Groborz, Ond ej</creator><creatorcontrib>Kolouchová, Kristýna ; Lobaz, Volodymyr ; Beneš, Hynek ; de la Rosa, Victor R ; Babuka, David ; Švec, Pavel ; ernoch, Peter ; Hrubý, Martin ; Hoogenboom, Richard ; Št pánek, Petr ; Groborz, Ond ej</creatorcontrib><description>Polymer solutions with a lower critical solution temperature (LCST) undergo reversible phase separation when heated above their cloud point temperature ( T CP or CPT). As such, they have been proposed for a wide range of biomedical applications, from injectable drug depots to switchable coatings for cell adhesion. However, in systematic studies, the T CP of these thermoresponsive polymers has been mostly measured in non-physiological solutions, thereby hindering the development of their medicinal applications. Here, we analysed the thermoresponsive properties of four acrylamide-based polymers with LCST, namely poly[( N -2,2-difluoroethyl)acrylamide] ( pDFEA ), poly[( N -isopropyl)acrylamide] ( pNIPAM ), poly[( N , N -diethyl)acrylamide] ( pDEA ), and poly[( N -acryloyl)pyrrolidine] ( pAP ). As shown by turbidimetry, their T CP in phosphate saline buffer (PBS) and foetal bovine serum (FBS) were consistently lower than those reported in the literature, typically assessed in pure water, even when using the same setup. In addition, these physiological solutions affected the variation of T CP as a function of polymer concentration (1.25 to 10.0 mg mL −1 ) and molar mass (20 to 50 kg mol −1 ). As shown by isothermal calorimetry, interactions between proteins in FBS and polymer aggregates were predominantly exothermic, which indicates that protein-polymer complexes are formed through enthalpically driven processes. In conclusion, the T CP of thermoresponsive polymers strongly depends on solvent composition and therefore should be measured under physiological conditions for future medicinal applications. We show that the cloud point temperature ( T CP ) of thermoresponsive polyacrylamides is considerably lower in physiologically relevant solvents (phosphate-buffered saline, serum) than in pure water. This decrease of T CP may be critical for some biomedical applications.</description><identifier>ISSN: 1759-9954</identifier><identifier>EISSN: 1759-9962</identifier><identifier>DOI: 10.1039/d1py00843a</identifier><language>eng</language><publisher>Cambridge: Royal Society of Chemistry</publisher><subject>Abbreviations ; Acrylamide ; Biomedical materials ; Cell adhesion ; Heat measurement ; NMR ; Nuclear magnetic resonance ; Phase separation ; Photon correlation spectroscopy ; Physiology ; Polyacrylamide ; Polyisopropyl acrylamide ; Polymer chemistry ; Polymers ; Proteins ; Refractivity</subject><ispartof>Polymer chemistry, 2021-09, Vol.12 (35), p.577-584</ispartof><rights>Copyright Royal Society of Chemistry 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c383t-c314a9fc43b7d3cdbb6d11ee5181bbc283b1196d5d17fb75b0c3087a542c537b3</citedby><cites>FETCH-LOGICAL-c383t-c314a9fc43b7d3cdbb6d11ee5181bbc283b1196d5d17fb75b0c3087a542c537b3</cites><orcidid>0000-0002-5075-261X ; 0000-0003-1433-678X ; 0000-0003-0479-2837 ; 0000-0002-8874-8632 ; 0000-0003-1817-3818 ; 0000-0001-7398-2058 ; 0000-0002-3164-6168 ; 0000-0002-1136-2280 ; 0000-0002-6604-2815</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>315,786,790,27957,27958</link.rule.ids></links><search><creatorcontrib>Kolouchová, Kristýna</creatorcontrib><creatorcontrib>Lobaz, Volodymyr</creatorcontrib><creatorcontrib>Beneš, Hynek</creatorcontrib><creatorcontrib>de la Rosa, Victor R</creatorcontrib><creatorcontrib>Babuka, David</creatorcontrib><creatorcontrib>Švec, Pavel</creatorcontrib><creatorcontrib>ernoch, Peter</creatorcontrib><creatorcontrib>Hrubý, Martin</creatorcontrib><creatorcontrib>Hoogenboom, Richard</creatorcontrib><creatorcontrib>Št pánek, Petr</creatorcontrib><creatorcontrib>Groborz, Ond ej</creatorcontrib><title>Thermoresponsive properties of polyacrylamides in physiological solutions</title><title>Polymer chemistry</title><description>Polymer solutions with a lower critical solution temperature (LCST) undergo reversible phase separation when heated above their cloud point temperature ( T CP or CPT). As such, they have been proposed for a wide range of biomedical applications, from injectable drug depots to switchable coatings for cell adhesion. However, in systematic studies, the T CP of these thermoresponsive polymers has been mostly measured in non-physiological solutions, thereby hindering the development of their medicinal applications. Here, we analysed the thermoresponsive properties of four acrylamide-based polymers with LCST, namely poly[( N -2,2-difluoroethyl)acrylamide] ( pDFEA ), poly[( N -isopropyl)acrylamide] ( pNIPAM ), poly[( N , N -diethyl)acrylamide] ( pDEA ), and poly[( N -acryloyl)pyrrolidine] ( pAP ). As shown by turbidimetry, their T CP in phosphate saline buffer (PBS) and foetal bovine serum (FBS) were consistently lower than those reported in the literature, typically assessed in pure water, even when using the same setup. In addition, these physiological solutions affected the variation of T CP as a function of polymer concentration (1.25 to 10.0 mg mL −1 ) and molar mass (20 to 50 kg mol −1 ). As shown by isothermal calorimetry, interactions between proteins in FBS and polymer aggregates were predominantly exothermic, which indicates that protein-polymer complexes are formed through enthalpically driven processes. In conclusion, the T CP of thermoresponsive polymers strongly depends on solvent composition and therefore should be measured under physiological conditions for future medicinal applications. We show that the cloud point temperature ( T CP ) of thermoresponsive polyacrylamides is considerably lower in physiologically relevant solvents (phosphate-buffered saline, serum) than in pure water. This decrease of T CP may be critical for some biomedical applications.</description><subject>Abbreviations</subject><subject>Acrylamide</subject><subject>Biomedical materials</subject><subject>Cell adhesion</subject><subject>Heat measurement</subject><subject>NMR</subject><subject>Nuclear magnetic resonance</subject><subject>Phase separation</subject><subject>Photon correlation spectroscopy</subject><subject>Physiology</subject><subject>Polyacrylamide</subject><subject>Polyisopropyl acrylamide</subject><subject>Polymer chemistry</subject><subject>Polymers</subject><subject>Proteins</subject><subject>Refractivity</subject><issn>1759-9954</issn><issn>1759-9962</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNpFkE1LAzEQhoMoWGov3oUFb0I1k2w2u8dSvwoFPdSDpyVfa1N2NzHZCvvvjVbqHGaG4Zl3hhehS8C3gGl1p8GPGJc5FSdoApxV86oqyOmxZ_k5msW4wyko5IQWE7TabE3oXDDRuz7aL5P54LwJgzUxc03mXTsKFcZWdFanke0zvx2jda37sEq0WXTtfrBp9wKdNaKNZvZXp-jt8WGzfJ6vX55Wy8V6rmhJh5QhF1Wjciq5pkpLWWgAYxiUIKUiJZUAVaGZBt5IziRWFJdcsJwoRrmkU3R90E2Pfu5NHOqd24c-nawJ4wSAkyQyRTcHSgUXYzBN7YPtRBhrwPWPW_U9vL7_urVI8NUBDlEduX836TeNwWgZ</recordid><startdate>20210921</startdate><enddate>20210921</enddate><creator>Kolouchová, Kristýna</creator><creator>Lobaz, Volodymyr</creator><creator>Beneš, Hynek</creator><creator>de la Rosa, Victor R</creator><creator>Babuka, David</creator><creator>Švec, Pavel</creator><creator>ernoch, Peter</creator><creator>Hrubý, Martin</creator><creator>Hoogenboom, Richard</creator><creator>Št pánek, Petr</creator><creator>Groborz, Ond ej</creator><general>Royal Society of Chemistry</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>JG9</scope><orcidid>https://orcid.org/0000-0002-5075-261X</orcidid><orcidid>https://orcid.org/0000-0003-1433-678X</orcidid><orcidid>https://orcid.org/0000-0003-0479-2837</orcidid><orcidid>https://orcid.org/0000-0002-8874-8632</orcidid><orcidid>https://orcid.org/0000-0003-1817-3818</orcidid><orcidid>https://orcid.org/0000-0001-7398-2058</orcidid><orcidid>https://orcid.org/0000-0002-3164-6168</orcidid><orcidid>https://orcid.org/0000-0002-1136-2280</orcidid><orcidid>https://orcid.org/0000-0002-6604-2815</orcidid></search><sort><creationdate>20210921</creationdate><title>Thermoresponsive properties of polyacrylamides in physiological solutions</title><author>Kolouchová, Kristýna ; Lobaz, Volodymyr ; Beneš, Hynek ; de la Rosa, Victor R ; Babuka, David ; Švec, Pavel ; ernoch, Peter ; Hrubý, Martin ; Hoogenboom, Richard ; Št pánek, Petr ; Groborz, Ond ej</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c383t-c314a9fc43b7d3cdbb6d11ee5181bbc283b1196d5d17fb75b0c3087a542c537b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Abbreviations</topic><topic>Acrylamide</topic><topic>Biomedical materials</topic><topic>Cell adhesion</topic><topic>Heat measurement</topic><topic>NMR</topic><topic>Nuclear magnetic resonance</topic><topic>Phase separation</topic><topic>Photon correlation spectroscopy</topic><topic>Physiology</topic><topic>Polyacrylamide</topic><topic>Polyisopropyl acrylamide</topic><topic>Polymer chemistry</topic><topic>Polymers</topic><topic>Proteins</topic><topic>Refractivity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kolouchová, Kristýna</creatorcontrib><creatorcontrib>Lobaz, Volodymyr</creatorcontrib><creatorcontrib>Beneš, Hynek</creatorcontrib><creatorcontrib>de la Rosa, Victor R</creatorcontrib><creatorcontrib>Babuka, David</creatorcontrib><creatorcontrib>Švec, Pavel</creatorcontrib><creatorcontrib>ernoch, Peter</creatorcontrib><creatorcontrib>Hrubý, Martin</creatorcontrib><creatorcontrib>Hoogenboom, Richard</creatorcontrib><creatorcontrib>Št pánek, Petr</creatorcontrib><creatorcontrib>Groborz, Ond ej</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Polymer chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kolouchová, Kristýna</au><au>Lobaz, Volodymyr</au><au>Beneš, Hynek</au><au>de la Rosa, Victor R</au><au>Babuka, David</au><au>Švec, Pavel</au><au>ernoch, Peter</au><au>Hrubý, Martin</au><au>Hoogenboom, Richard</au><au>Št pánek, Petr</au><au>Groborz, Ond ej</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Thermoresponsive properties of polyacrylamides in physiological solutions</atitle><jtitle>Polymer chemistry</jtitle><date>2021-09-21</date><risdate>2021</risdate><volume>12</volume><issue>35</issue><spage>577</spage><epage>584</epage><pages>577-584</pages><issn>1759-9954</issn><eissn>1759-9962</eissn><notes>13</notes><notes>C</notes><notes>d</notes><notes>H-</notes><notes>F</notes><notes>C HSQC), size exclusion chromatograms (SEC traces) of the study polymers; raw and processed turbidimetric data, raw and processed isothermal calorimetry data, dynamic light scattering data, refractive index increment (d</notes><notes>10.1039/d1py00843a</notes><notes>H</notes><notes>19</notes><notes>n</notes><notes>Electronic supplementary information (ESI) available: Material section, experimental &amp; instrumental section (detailed description of monomer and polymer syntheses); processed NMR spectra</notes><notes>1</notes><notes>additional information, list of abbreviations and symbols used in this article, and author contributions (CRediT). See DOI</notes><abstract>Polymer solutions with a lower critical solution temperature (LCST) undergo reversible phase separation when heated above their cloud point temperature ( T CP or CPT). As such, they have been proposed for a wide range of biomedical applications, from injectable drug depots to switchable coatings for cell adhesion. However, in systematic studies, the T CP of these thermoresponsive polymers has been mostly measured in non-physiological solutions, thereby hindering the development of their medicinal applications. Here, we analysed the thermoresponsive properties of four acrylamide-based polymers with LCST, namely poly[( N -2,2-difluoroethyl)acrylamide] ( pDFEA ), poly[( N -isopropyl)acrylamide] ( pNIPAM ), poly[( N , N -diethyl)acrylamide] ( pDEA ), and poly[( N -acryloyl)pyrrolidine] ( pAP ). As shown by turbidimetry, their T CP in phosphate saline buffer (PBS) and foetal bovine serum (FBS) were consistently lower than those reported in the literature, typically assessed in pure water, even when using the same setup. In addition, these physiological solutions affected the variation of T CP as a function of polymer concentration (1.25 to 10.0 mg mL −1 ) and molar mass (20 to 50 kg mol −1 ). As shown by isothermal calorimetry, interactions between proteins in FBS and polymer aggregates were predominantly exothermic, which indicates that protein-polymer complexes are formed through enthalpically driven processes. In conclusion, the T CP of thermoresponsive polymers strongly depends on solvent composition and therefore should be measured under physiological conditions for future medicinal applications. We show that the cloud point temperature ( T CP ) of thermoresponsive polyacrylamides is considerably lower in physiologically relevant solvents (phosphate-buffered saline, serum) than in pure water. This decrease of T CP may be critical for some biomedical applications.</abstract><cop>Cambridge</cop><pub>Royal Society of Chemistry</pub><doi>10.1039/d1py00843a</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-5075-261X</orcidid><orcidid>https://orcid.org/0000-0003-1433-678X</orcidid><orcidid>https://orcid.org/0000-0003-0479-2837</orcidid><orcidid>https://orcid.org/0000-0002-8874-8632</orcidid><orcidid>https://orcid.org/0000-0003-1817-3818</orcidid><orcidid>https://orcid.org/0000-0001-7398-2058</orcidid><orcidid>https://orcid.org/0000-0002-3164-6168</orcidid><orcidid>https://orcid.org/0000-0002-1136-2280</orcidid><orcidid>https://orcid.org/0000-0002-6604-2815</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1759-9954
ispartof Polymer chemistry, 2021-09, Vol.12 (35), p.577-584
issn 1759-9954
1759-9962
language eng
recordid cdi_crossref_primary_10_1039_D1PY00843A
source Royal Society of Chemistry:Jisc Collections:Royal Society of Chemistry Read and Publish 2022-2024 (reading list)
subjects Abbreviations
Acrylamide
Biomedical materials
Cell adhesion
Heat measurement
NMR
Nuclear magnetic resonance
Phase separation
Photon correlation spectroscopy
Physiology
Polyacrylamide
Polyisopropyl acrylamide
Polymer chemistry
Polymers
Proteins
Refractivity
title Thermoresponsive properties of polyacrylamides in physiological solutions
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-09-22T19%3A32%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Thermoresponsive%20properties%20of%20polyacrylamides%20in%20physiological%20solutions&rft.jtitle=Polymer%20chemistry&rft.au=Kolouchov%C3%A1,%20Krist%C3%BDna&rft.date=2021-09-21&rft.volume=12&rft.issue=35&rft.spage=577&rft.epage=584&rft.pages=577-584&rft.issn=1759-9954&rft.eissn=1759-9962&rft_id=info:doi/10.1039/d1py00843a&rft_dat=%3Cproquest_cross%3E2572117228%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c383t-c314a9fc43b7d3cdbb6d11ee5181bbc283b1196d5d17fb75b0c3087a542c537b3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2572117228&rft_id=info:pmid/&rfr_iscdi=true