Loading…

Three-Dimensional Self-Assembly of Core/Shell-Like Nanostructures for High-Performance Nanocomposite Permanent Magnets

Core/shell nanostructures are fascinating for many advanced applications including strong permanent magnets, magnetic recording, and biotechnology. They are generally achieved via chemical approaches, but these techniques limit them to nanoparticles. Here, we describe a three-dimensional (3D) self-a...

Full description

Saved in:
Bibliographic Details
Published in:Nano letters 2016-09, Vol.16 (9), p.5631-5638
Main Authors: Li, Hailing, Li, Xiaohong, Guo, Defeng, Lou, Li, Li, Wei, Zhang, Xiangyi
Format: Article
Language:English
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Core/shell nanostructures are fascinating for many advanced applications including strong permanent magnets, magnetic recording, and biotechnology. They are generally achieved via chemical approaches, but these techniques limit them to nanoparticles. Here, we describe a three-dimensional (3D) self-assembly of core/shell-like nanocomposite magnets, with hard-magnetic Nd2Fe14B core of ∼45 nm and soft-magnetic α-Fe shell of ∼13 nm, through a physical route. The resulting Nd2Fe14B/α-Fe core/shell-like nanostructure allows both large remanent magnetization and high coercivity, leading to a record-high energy product of 25 MGOe which reaches the theoretical limit for isotropic Nd2Fe14B/α-Fe nanocomposite magnets. Our approach is based on a sequential growth of the core and shell nanocrystals in an alloy melt. These results make an important step toward fabricating core/shell-like nanostructure in 3D materials.
ISSN:1530-6984
1530-6992
DOI:10.1021/acs.nanolett.6b02210