Loading…

Molecular dynamics simulations to the bidirectional adhesion signaling pathway of integrin α V β 3

The bidirectional force transmission process of integrin through the cell membrane is still not well understood. Several possible mechanisms have been discussed in literature on the basis of experimental data, and in this study, we investigate these mechanisms by free and steered molecular dynamics...

Full description

Saved in:
Bibliographic Details
Published in:Proteins, structure, function, and bioinformatics structure, function, and bioinformatics, 2020-05, Vol.88 (5), p.679-688
Main Authors: Kulke, Martin, Langel, Walter
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c999-d49b37c31220e2c3d7435dcdbc46bfb35155db4410e284222011949da04ea7c23
cites cdi_FETCH-LOGICAL-c999-d49b37c31220e2c3d7435dcdbc46bfb35155db4410e284222011949da04ea7c23
container_end_page 688
container_issue 5
container_start_page 679
container_title Proteins, structure, function, and bioinformatics
container_volume 88
creator Kulke, Martin
Langel, Walter
description The bidirectional force transmission process of integrin through the cell membrane is still not well understood. Several possible mechanisms have been discussed in literature on the basis of experimental data, and in this study, we investigate these mechanisms by free and steered molecular dynamics simulations. For the first time, constant velocity pulling on the complete integrin molecule inside a dipalmitoyl-phosphatidylcholine membrane is conducted. From the results, the most likely mechanism for inside-out and outside-in signaling is the switchblade model with further separation of the transmembrane helices.
doi_str_mv 10.1002/prot.25849
format article
fullrecord <record><control><sourceid>pubmed_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1002_prot_25849</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>31693219</sourcerecordid><originalsourceid>FETCH-LOGICAL-c999-d49b37c31220e2c3d7435dcdbc46bfb35155db4410e284222011949da04ea7c23</originalsourceid><addsrcrecordid>eNo9kMtKA0EQRRtRTIxu_ACptTCxn5nppQSjQsRNcDv0a5KWedE9QfJZ-iH5JjtGXdWtW4daHISuCZ4SjOldH7phSkXB5QkaEyzzDBPGT9EYF0WeMVGIEbqI8R1jPJNsdo5GjKRAiRwj-9LVzmxrFcDuWtV4EyH6JhWD79oIQwfDxoH21gdnDp2qQdmNiykmcp12366hV8PmQ-2gq8C3g1sH38L-E95g_wXsEp1Vqo7u6ndO0GrxsJo_ZcvXx-f5_TIzUsrMcqlZbhihFDtqmM05E9ZYbfhMV5oJIoTVnJN0LThNFCGSS6swdyo3lE3Q7fGtCV2MwVVlH3yjwq4kuDyYKg-myh9TCb45wv1WN87-o39q2Der4Ga2</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Molecular dynamics simulations to the bidirectional adhesion signaling pathway of integrin α V β 3</title><source>Wiley</source><creator>Kulke, Martin ; Langel, Walter</creator><creatorcontrib>Kulke, Martin ; Langel, Walter</creatorcontrib><description>The bidirectional force transmission process of integrin through the cell membrane is still not well understood. Several possible mechanisms have been discussed in literature on the basis of experimental data, and in this study, we investigate these mechanisms by free and steered molecular dynamics simulations. For the first time, constant velocity pulling on the complete integrin molecule inside a dipalmitoyl-phosphatidylcholine membrane is conducted. From the results, the most likely mechanism for inside-out and outside-in signaling is the switchblade model with further separation of the transmembrane helices.</description><identifier>ISSN: 0887-3585</identifier><identifier>EISSN: 1097-0134</identifier><identifier>DOI: 10.1002/prot.25849</identifier><identifier>PMID: 31693219</identifier><language>eng</language><publisher>United States</publisher><subject>1,2-Dipalmitoylphosphatidylcholine - chemistry ; 1,2-Dipalmitoylphosphatidylcholine - metabolism ; Binding Sites ; Cell Membrane - chemistry ; Cell Membrane - metabolism ; Crystallography, X-Ray ; Extracellular Matrix - chemistry ; Extracellular Matrix - metabolism ; Humans ; Integrin alphaVbeta3 - chemistry ; Integrin alphaVbeta3 - genetics ; Integrin alphaVbeta3 - metabolism ; Molecular Dynamics Simulation ; Principal Component Analysis ; Protein Binding ; Protein Conformation, alpha-Helical ; Protein Conformation, beta-Strand ; Protein Interaction Domains and Motifs ; Thermodynamics</subject><ispartof>Proteins, structure, function, and bioinformatics, 2020-05, Vol.88 (5), p.679-688</ispartof><rights>2019 The Authors. Proteins: Structure, Function, and Bioinformatics published by Wiley Periodicals, Inc.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c999-d49b37c31220e2c3d7435dcdbc46bfb35155db4410e284222011949da04ea7c23</citedby><cites>FETCH-LOGICAL-c999-d49b37c31220e2c3d7435dcdbc46bfb35155db4410e284222011949da04ea7c23</cites><orcidid>0000-0002-2689-2428</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>315,786,790,27957,27958</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31693219$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kulke, Martin</creatorcontrib><creatorcontrib>Langel, Walter</creatorcontrib><title>Molecular dynamics simulations to the bidirectional adhesion signaling pathway of integrin α V β 3</title><title>Proteins, structure, function, and bioinformatics</title><addtitle>Proteins</addtitle><description>The bidirectional force transmission process of integrin through the cell membrane is still not well understood. Several possible mechanisms have been discussed in literature on the basis of experimental data, and in this study, we investigate these mechanisms by free and steered molecular dynamics simulations. For the first time, constant velocity pulling on the complete integrin molecule inside a dipalmitoyl-phosphatidylcholine membrane is conducted. From the results, the most likely mechanism for inside-out and outside-in signaling is the switchblade model with further separation of the transmembrane helices.</description><subject>1,2-Dipalmitoylphosphatidylcholine - chemistry</subject><subject>1,2-Dipalmitoylphosphatidylcholine - metabolism</subject><subject>Binding Sites</subject><subject>Cell Membrane - chemistry</subject><subject>Cell Membrane - metabolism</subject><subject>Crystallography, X-Ray</subject><subject>Extracellular Matrix - chemistry</subject><subject>Extracellular Matrix - metabolism</subject><subject>Humans</subject><subject>Integrin alphaVbeta3 - chemistry</subject><subject>Integrin alphaVbeta3 - genetics</subject><subject>Integrin alphaVbeta3 - metabolism</subject><subject>Molecular Dynamics Simulation</subject><subject>Principal Component Analysis</subject><subject>Protein Binding</subject><subject>Protein Conformation, alpha-Helical</subject><subject>Protein Conformation, beta-Strand</subject><subject>Protein Interaction Domains and Motifs</subject><subject>Thermodynamics</subject><issn>0887-3585</issn><issn>1097-0134</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNo9kMtKA0EQRRtRTIxu_ACptTCxn5nppQSjQsRNcDv0a5KWedE9QfJZ-iH5JjtGXdWtW4daHISuCZ4SjOldH7phSkXB5QkaEyzzDBPGT9EYF0WeMVGIEbqI8R1jPJNsdo5GjKRAiRwj-9LVzmxrFcDuWtV4EyH6JhWD79oIQwfDxoH21gdnDp2qQdmNiykmcp12366hV8PmQ-2gq8C3g1sH38L-E95g_wXsEp1Vqo7u6ndO0GrxsJo_ZcvXx-f5_TIzUsrMcqlZbhihFDtqmM05E9ZYbfhMV5oJIoTVnJN0LThNFCGSS6swdyo3lE3Q7fGtCV2MwVVlH3yjwq4kuDyYKg-myh9TCb45wv1WN87-o39q2Der4Ga2</recordid><startdate>202005</startdate><enddate>202005</enddate><creator>Kulke, Martin</creator><creator>Langel, Walter</creator><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-2689-2428</orcidid></search><sort><creationdate>202005</creationdate><title>Molecular dynamics simulations to the bidirectional adhesion signaling pathway of integrin α V β 3</title><author>Kulke, Martin ; Langel, Walter</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c999-d49b37c31220e2c3d7435dcdbc46bfb35155db4410e284222011949da04ea7c23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>1,2-Dipalmitoylphosphatidylcholine - chemistry</topic><topic>1,2-Dipalmitoylphosphatidylcholine - metabolism</topic><topic>Binding Sites</topic><topic>Cell Membrane - chemistry</topic><topic>Cell Membrane - metabolism</topic><topic>Crystallography, X-Ray</topic><topic>Extracellular Matrix - chemistry</topic><topic>Extracellular Matrix - metabolism</topic><topic>Humans</topic><topic>Integrin alphaVbeta3 - chemistry</topic><topic>Integrin alphaVbeta3 - genetics</topic><topic>Integrin alphaVbeta3 - metabolism</topic><topic>Molecular Dynamics Simulation</topic><topic>Principal Component Analysis</topic><topic>Protein Binding</topic><topic>Protein Conformation, alpha-Helical</topic><topic>Protein Conformation, beta-Strand</topic><topic>Protein Interaction Domains and Motifs</topic><topic>Thermodynamics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kulke, Martin</creatorcontrib><creatorcontrib>Langel, Walter</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><jtitle>Proteins, structure, function, and bioinformatics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kulke, Martin</au><au>Langel, Walter</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Molecular dynamics simulations to the bidirectional adhesion signaling pathway of integrin α V β 3</atitle><jtitle>Proteins, structure, function, and bioinformatics</jtitle><addtitle>Proteins</addtitle><date>2020-05</date><risdate>2020</risdate><volume>88</volume><issue>5</issue><spage>679</spage><epage>688</epage><pages>679-688</pages><issn>0887-3585</issn><eissn>1097-0134</eissn><abstract>The bidirectional force transmission process of integrin through the cell membrane is still not well understood. Several possible mechanisms have been discussed in literature on the basis of experimental data, and in this study, we investigate these mechanisms by free and steered molecular dynamics simulations. For the first time, constant velocity pulling on the complete integrin molecule inside a dipalmitoyl-phosphatidylcholine membrane is conducted. From the results, the most likely mechanism for inside-out and outside-in signaling is the switchblade model with further separation of the transmembrane helices.</abstract><cop>United States</cop><pmid>31693219</pmid><doi>10.1002/prot.25849</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-2689-2428</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0887-3585
ispartof Proteins, structure, function, and bioinformatics, 2020-05, Vol.88 (5), p.679-688
issn 0887-3585
1097-0134
language eng
recordid cdi_crossref_primary_10_1002_prot_25849
source Wiley
subjects 1,2-Dipalmitoylphosphatidylcholine - chemistry
1,2-Dipalmitoylphosphatidylcholine - metabolism
Binding Sites
Cell Membrane - chemistry
Cell Membrane - metabolism
Crystallography, X-Ray
Extracellular Matrix - chemistry
Extracellular Matrix - metabolism
Humans
Integrin alphaVbeta3 - chemistry
Integrin alphaVbeta3 - genetics
Integrin alphaVbeta3 - metabolism
Molecular Dynamics Simulation
Principal Component Analysis
Protein Binding
Protein Conformation, alpha-Helical
Protein Conformation, beta-Strand
Protein Interaction Domains and Motifs
Thermodynamics
title Molecular dynamics simulations to the bidirectional adhesion signaling pathway of integrin α V β 3
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-09-22T17%3A40%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pubmed_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Molecular%20dynamics%20simulations%20to%20the%20bidirectional%20adhesion%20signaling%20pathway%20of%20integrin%20%CE%B1%20V%20%CE%B2%203&rft.jtitle=Proteins,%20structure,%20function,%20and%20bioinformatics&rft.au=Kulke,%20Martin&rft.date=2020-05&rft.volume=88&rft.issue=5&rft.spage=679&rft.epage=688&rft.pages=679-688&rft.issn=0887-3585&rft.eissn=1097-0134&rft_id=info:doi/10.1002/prot.25849&rft_dat=%3Cpubmed_cross%3E31693219%3C/pubmed_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c999-d49b37c31220e2c3d7435dcdbc46bfb35155db4410e284222011949da04ea7c23%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/31693219&rfr_iscdi=true