Loading…

Creep–Fatigue Interaction of Inconel 718 Manufactured by Electron Beam Melting

Electron beam melting of Ni‐base superalloy Inconel 718 allows producing a columnar‐grained microstructure with a pronounced texture, which offers exceptional resistance against high‐temperature loading with severe creep–fatigue interaction arising in components of aircraft jet engines. This study c...

Full description

Saved in:
Bibliographic Details
Published in:Advanced engineering materials 2023-08, Vol.25 (16), p.n/a
Main Authors: Guth, Stefan, Babinský, Tomáš, Antusch, Steffen, Klein, Alexander, Kuntz, Daniel, Šulák, Ivo
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c3294-f637124a0aaeb39aacc17f5f04c0eafdc37c15ecd302a9b0fca2210c2ec19acd3
cites cdi_FETCH-LOGICAL-c3294-f637124a0aaeb39aacc17f5f04c0eafdc37c15ecd302a9b0fca2210c2ec19acd3
container_end_page n/a
container_issue 16
container_start_page
container_title Advanced engineering materials
container_volume 25
creator Guth, Stefan
Babinský, Tomáš
Antusch, Steffen
Klein, Alexander
Kuntz, Daniel
Šulák, Ivo
description Electron beam melting of Ni‐base superalloy Inconel 718 allows producing a columnar‐grained microstructure with a pronounced texture, which offers exceptional resistance against high‐temperature loading with severe creep–fatigue interaction arising in components of aircraft jet engines. This study considers the deformation, damage, and lifetime behavior of electron‐beam‐melted Inconel 718 under in‐phase thermomechanical fatigue loading with varying amounts of creep–fatigue interaction. Strain‐controlled thermomechanical fatigue tests with equal‐ramp cycles, slow–fast cycles, and dwell time cycles are conducted in the temperature range from 300 to 650 °C. Results show that both dwell time and slow–fast cycles promote intergranular cracking, gradual tensile stress relaxation, as well as precipitate dissolution and coarsening giving rise to cyclic softening. The interplay of these mechanisms leads to increased lifetimes in both dwell time and slow–fast tests compared to equal ramp tests at higher strain amplitudes. Conversely, at lower mechanical strain amplitudes, the opposite is observed. A comparison with results of conventional Inconel 718 indicates that the electron‐beam‐melted material exhibits superior resistance against strain‐controlled loading at elevated temperatures such as thermomechanical fatigue. Thermomechanical fatigue tests with varying amounts of creep–fatigue interaction show that electron‐beam‐melted Ni‐base alloy Inconel 718 exhibits excellent creep‐fatigue resistance due to its columnar‐grained microstructure with strong texture along the loading direction. The predominantly intergranular damage concentrates in areas with less elongate grains suggesting that the manufacturing strategy may be optimized to increase the creep‐fatigue resistance even further.
doi_str_mv 10.1002/adem.202300294
format article
fullrecord <record><control><sourceid>wiley_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1002_adem_202300294</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>ADEM202300294</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3294-f637124a0aaeb39aacc17f5f04c0eafdc37c15ecd302a9b0fca2210c2ec19acd3</originalsourceid><addsrcrecordid>eNqFkE1Ow0AMhUcIJEphy3oukGLP5KdZltJCJSpYwDpyHU8VlCbVJBXqjjtwQ07CVEWwZGU_-z3L-pS6RhghgLmhUjYjA8YGkccnaoCJySKTxuPT0Md2HGGapOfqouveABAB7UA9T73I9uvjc059td6JXjS9eOK-ahvduiC5baTWGY71kpqdC6udl1Kv9npWC_c--G6FNnopdV8160t15qju5OqnDtXrfPYyfYgen-4X08ljxDZ8F7nUZmhiAiJZ2ZyIGTOXOIgZhFzJNmNMhEsLhvIVOCZjENgIY05hPFSj4132bdd5ccXWVxvy-wKhOPAoDjyKXx4hkB8D71Ut-3_cxeRutvzLfgPf32Yz</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Creep–Fatigue Interaction of Inconel 718 Manufactured by Electron Beam Melting</title><source>Wiley</source><creator>Guth, Stefan ; Babinský, Tomáš ; Antusch, Steffen ; Klein, Alexander ; Kuntz, Daniel ; Šulák, Ivo</creator><creatorcontrib>Guth, Stefan ; Babinský, Tomáš ; Antusch, Steffen ; Klein, Alexander ; Kuntz, Daniel ; Šulák, Ivo</creatorcontrib><description>Electron beam melting of Ni‐base superalloy Inconel 718 allows producing a columnar‐grained microstructure with a pronounced texture, which offers exceptional resistance against high‐temperature loading with severe creep–fatigue interaction arising in components of aircraft jet engines. This study considers the deformation, damage, and lifetime behavior of electron‐beam‐melted Inconel 718 under in‐phase thermomechanical fatigue loading with varying amounts of creep–fatigue interaction. Strain‐controlled thermomechanical fatigue tests with equal‐ramp cycles, slow–fast cycles, and dwell time cycles are conducted in the temperature range from 300 to 650 °C. Results show that both dwell time and slow–fast cycles promote intergranular cracking, gradual tensile stress relaxation, as well as precipitate dissolution and coarsening giving rise to cyclic softening. The interplay of these mechanisms leads to increased lifetimes in both dwell time and slow–fast tests compared to equal ramp tests at higher strain amplitudes. Conversely, at lower mechanical strain amplitudes, the opposite is observed. A comparison with results of conventional Inconel 718 indicates that the electron‐beam‐melted material exhibits superior resistance against strain‐controlled loading at elevated temperatures such as thermomechanical fatigue. Thermomechanical fatigue tests with varying amounts of creep–fatigue interaction show that electron‐beam‐melted Ni‐base alloy Inconel 718 exhibits excellent creep‐fatigue resistance due to its columnar‐grained microstructure with strong texture along the loading direction. The predominantly intergranular damage concentrates in areas with less elongate grains suggesting that the manufacturing strategy may be optimized to increase the creep‐fatigue resistance even further.</description><identifier>ISSN: 1438-1656</identifier><identifier>EISSN: 1527-2648</identifier><identifier>DOI: 10.1002/adem.202300294</identifier><language>eng</language><subject>additive manufacturing ; creep–fatigue interaction ; damage mechanisms ; Inconel 718 ; thermomechanical fatigue</subject><ispartof>Advanced engineering materials, 2023-08, Vol.25 (16), p.n/a</ispartof><rights>2023 The Authors. Advanced Engineering Materials published by Wiley‐VCH GmbH</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3294-f637124a0aaeb39aacc17f5f04c0eafdc37c15ecd302a9b0fca2210c2ec19acd3</citedby><cites>FETCH-LOGICAL-c3294-f637124a0aaeb39aacc17f5f04c0eafdc37c15ecd302a9b0fca2210c2ec19acd3</cites><orcidid>0000-0002-9851-3589 ; 0000-0003-2254-4511</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fadem.202300294$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fadem.202300294$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>315,786,790,27957,27958,50923,51032</link.rule.ids></links><search><creatorcontrib>Guth, Stefan</creatorcontrib><creatorcontrib>Babinský, Tomáš</creatorcontrib><creatorcontrib>Antusch, Steffen</creatorcontrib><creatorcontrib>Klein, Alexander</creatorcontrib><creatorcontrib>Kuntz, Daniel</creatorcontrib><creatorcontrib>Šulák, Ivo</creatorcontrib><title>Creep–Fatigue Interaction of Inconel 718 Manufactured by Electron Beam Melting</title><title>Advanced engineering materials</title><description>Electron beam melting of Ni‐base superalloy Inconel 718 allows producing a columnar‐grained microstructure with a pronounced texture, which offers exceptional resistance against high‐temperature loading with severe creep–fatigue interaction arising in components of aircraft jet engines. This study considers the deformation, damage, and lifetime behavior of electron‐beam‐melted Inconel 718 under in‐phase thermomechanical fatigue loading with varying amounts of creep–fatigue interaction. Strain‐controlled thermomechanical fatigue tests with equal‐ramp cycles, slow–fast cycles, and dwell time cycles are conducted in the temperature range from 300 to 650 °C. Results show that both dwell time and slow–fast cycles promote intergranular cracking, gradual tensile stress relaxation, as well as precipitate dissolution and coarsening giving rise to cyclic softening. The interplay of these mechanisms leads to increased lifetimes in both dwell time and slow–fast tests compared to equal ramp tests at higher strain amplitudes. Conversely, at lower mechanical strain amplitudes, the opposite is observed. A comparison with results of conventional Inconel 718 indicates that the electron‐beam‐melted material exhibits superior resistance against strain‐controlled loading at elevated temperatures such as thermomechanical fatigue. Thermomechanical fatigue tests with varying amounts of creep–fatigue interaction show that electron‐beam‐melted Ni‐base alloy Inconel 718 exhibits excellent creep‐fatigue resistance due to its columnar‐grained microstructure with strong texture along the loading direction. The predominantly intergranular damage concentrates in areas with less elongate grains suggesting that the manufacturing strategy may be optimized to increase the creep‐fatigue resistance even further.</description><subject>additive manufacturing</subject><subject>creep–fatigue interaction</subject><subject>damage mechanisms</subject><subject>Inconel 718</subject><subject>thermomechanical fatigue</subject><issn>1438-1656</issn><issn>1527-2648</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>WIN</sourceid><recordid>eNqFkE1Ow0AMhUcIJEphy3oukGLP5KdZltJCJSpYwDpyHU8VlCbVJBXqjjtwQ07CVEWwZGU_-z3L-pS6RhghgLmhUjYjA8YGkccnaoCJySKTxuPT0Md2HGGapOfqouveABAB7UA9T73I9uvjc059td6JXjS9eOK-ahvduiC5baTWGY71kpqdC6udl1Kv9npWC_c--G6FNnopdV8160t15qju5OqnDtXrfPYyfYgen-4X08ljxDZ8F7nUZmhiAiJZ2ZyIGTOXOIgZhFzJNmNMhEsLhvIVOCZjENgIY05hPFSj4132bdd5ccXWVxvy-wKhOPAoDjyKXx4hkB8D71Ut-3_cxeRutvzLfgPf32Yz</recordid><startdate>202308</startdate><enddate>202308</enddate><creator>Guth, Stefan</creator><creator>Babinský, Tomáš</creator><creator>Antusch, Steffen</creator><creator>Klein, Alexander</creator><creator>Kuntz, Daniel</creator><creator>Šulák, Ivo</creator><scope>24P</scope><scope>WIN</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-9851-3589</orcidid><orcidid>https://orcid.org/0000-0003-2254-4511</orcidid></search><sort><creationdate>202308</creationdate><title>Creep–Fatigue Interaction of Inconel 718 Manufactured by Electron Beam Melting</title><author>Guth, Stefan ; Babinský, Tomáš ; Antusch, Steffen ; Klein, Alexander ; Kuntz, Daniel ; Šulák, Ivo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3294-f637124a0aaeb39aacc17f5f04c0eafdc37c15ecd302a9b0fca2210c2ec19acd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>additive manufacturing</topic><topic>creep–fatigue interaction</topic><topic>damage mechanisms</topic><topic>Inconel 718</topic><topic>thermomechanical fatigue</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Guth, Stefan</creatorcontrib><creatorcontrib>Babinský, Tomáš</creatorcontrib><creatorcontrib>Antusch, Steffen</creatorcontrib><creatorcontrib>Klein, Alexander</creatorcontrib><creatorcontrib>Kuntz, Daniel</creatorcontrib><creatorcontrib>Šulák, Ivo</creatorcontrib><collection>Wiley-Blackwell Titles (Open access)</collection><collection>Wiley Online Library Free Content</collection><collection>CrossRef</collection><jtitle>Advanced engineering materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Guth, Stefan</au><au>Babinský, Tomáš</au><au>Antusch, Steffen</au><au>Klein, Alexander</au><au>Kuntz, Daniel</au><au>Šulák, Ivo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Creep–Fatigue Interaction of Inconel 718 Manufactured by Electron Beam Melting</atitle><jtitle>Advanced engineering materials</jtitle><date>2023-08</date><risdate>2023</risdate><volume>25</volume><issue>16</issue><epage>n/a</epage><issn>1438-1656</issn><eissn>1527-2648</eissn><abstract>Electron beam melting of Ni‐base superalloy Inconel 718 allows producing a columnar‐grained microstructure with a pronounced texture, which offers exceptional resistance against high‐temperature loading with severe creep–fatigue interaction arising in components of aircraft jet engines. This study considers the deformation, damage, and lifetime behavior of electron‐beam‐melted Inconel 718 under in‐phase thermomechanical fatigue loading with varying amounts of creep–fatigue interaction. Strain‐controlled thermomechanical fatigue tests with equal‐ramp cycles, slow–fast cycles, and dwell time cycles are conducted in the temperature range from 300 to 650 °C. Results show that both dwell time and slow–fast cycles promote intergranular cracking, gradual tensile stress relaxation, as well as precipitate dissolution and coarsening giving rise to cyclic softening. The interplay of these mechanisms leads to increased lifetimes in both dwell time and slow–fast tests compared to equal ramp tests at higher strain amplitudes. Conversely, at lower mechanical strain amplitudes, the opposite is observed. A comparison with results of conventional Inconel 718 indicates that the electron‐beam‐melted material exhibits superior resistance against strain‐controlled loading at elevated temperatures such as thermomechanical fatigue. Thermomechanical fatigue tests with varying amounts of creep–fatigue interaction show that electron‐beam‐melted Ni‐base alloy Inconel 718 exhibits excellent creep‐fatigue resistance due to its columnar‐grained microstructure with strong texture along the loading direction. The predominantly intergranular damage concentrates in areas with less elongate grains suggesting that the manufacturing strategy may be optimized to increase the creep‐fatigue resistance even further.</abstract><doi>10.1002/adem.202300294</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-9851-3589</orcidid><orcidid>https://orcid.org/0000-0003-2254-4511</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1438-1656
ispartof Advanced engineering materials, 2023-08, Vol.25 (16), p.n/a
issn 1438-1656
1527-2648
language eng
recordid cdi_crossref_primary_10_1002_adem_202300294
source Wiley
subjects additive manufacturing
creep–fatigue interaction
damage mechanisms
Inconel 718
thermomechanical fatigue
title Creep–Fatigue Interaction of Inconel 718 Manufactured by Electron Beam Melting
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-09-22T16%3A41%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-wiley_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Creep%E2%80%93Fatigue%20Interaction%20of%20Inconel%20718%20Manufactured%20by%20Electron%20Beam%20Melting&rft.jtitle=Advanced%20engineering%20materials&rft.au=Guth,%20Stefan&rft.date=2023-08&rft.volume=25&rft.issue=16&rft.epage=n/a&rft.issn=1438-1656&rft.eissn=1527-2648&rft_id=info:doi/10.1002/adem.202300294&rft_dat=%3Cwiley_cross%3EADEM202300294%3C/wiley_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c3294-f637124a0aaeb39aacc17f5f04c0eafdc37c15ecd302a9b0fca2210c2ec19acd3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true