Loading…

Semiconductor–Semimetal 2D/3D MoS2/SrRuO3(111) TMD/TMO Heterojunction-Based ReRAM Devices

We have designed and grown MoS2/SrRuO3(111) (MoS2/SRO­(111)) semiconductor (SC)/semimetal (SM) heterostructures involving transition-metal dichalcogenide (TMD) and transition-metal oxide (TMO) partners for TMD-based electronic device application. MoS2 is directly grown on a polar SrRuO3(111)/c-Al2O3...

Full description

Saved in:
Bibliographic Details
Published in:ACS applied electronic materials 2023-10, Vol.5 (10), p.5588-5597
Main Authors: Parmar, Swati, Panchal, Suresh, Datar, Suwarna, Ogale, Satishchandra
Format: Article
Language:English
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 5597
container_issue 10
container_start_page 5588
container_title ACS applied electronic materials
container_volume 5
creator Parmar, Swati
Panchal, Suresh
Datar, Suwarna
Ogale, Satishchandra
description We have designed and grown MoS2/SrRuO3(111) (MoS2/SRO­(111)) semiconductor (SC)/semimetal (SM) heterostructures involving transition-metal dichalcogenide (TMD) and transition-metal oxide (TMO) partners for TMD-based electronic device application. MoS2 is directly grown on a polar SrRuO3(111)/c-Al2O3 substrate by pulsed laser deposition (PLD). A comparative evaluation of few-layer (FL) versus bulk (BL) MoS2 on polar SRO(111) was performed by using several chemical and physical characterizations. Raman spectroscopy and X-ray photoelectron spectroscopy (XPS) confirm the degenerate states in strained MoS2 caused by polar SRO(111). In-plane room-temperature resistivity of 1.83 and 1.39 μΩ-cm is obtained for FL and BL MoS2/SRO, respectively. Conducting atomic force microscopy (CAFM) was used to elucidate the distribution of in-plane conductive components. The electrical current across the CAFM-tip/MoS2/SRO­(111) is primarily controlled by MoS2 and its interfaces with the tip metal on one side and the oxide semimetal on the other. We find an impressive ReRAM unipolar linear I–V characteristic in the case of FL MoS2/SRO (a sharp jump by a factor of 12), while in the BL MoS2/SRO (thicker overlayer) case, only a negligible effect is noted. Studies of the work function and Schottky barrier height (SBH) modulation due to the thickness variation of the semiconductor MoS2 at the SC/SM heterojunction are performed by the electrostatic force microscopy (EFM) to unveil the mechanism of the memristor-type I–V characteristics.
doi_str_mv 10.1021/acsaelm.3c00907
format article
fullrecord <record><control><sourceid>acs</sourceid><recordid>TN_cdi_acs_journals_10_1021_acsaelm_3c00907</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>d018240189</sourcerecordid><originalsourceid>FETCH-LOGICAL-a191t-8cac27aa0140cab643afcfd65013bfb9abdfe519a20271ab439121b8043c5e763</originalsourceid><addsrcrecordid>eNpNkM1Og0AUhSdGE5vatVuWGkO5d4afsqylWpMSEsCVC3IZhgQCTMKPa9_BN_RJpJGFq3PO4pyTfIzdI2wROFokB1JNuxUSwAfviq24KzzTRRTX__wt2wxDDTBXuM0dXLGPRLWV1F0xyVH3P1_fl9yqkRqDB5YIjFAn3Er6eIrEAyI-GmkYWGkYGSc1ql7XUyfHSnfmMw2qMGIV70MjUJ-VVMMduympGdRm0TV7fzmmh5N5jl7fDvuzSejjaO4kSe4RAdogKXdtQaUsC9cBFHmZ-5QXpXLQJw7cQ8pt4SPHfAe2kI7yXLFmT3-7M4Ws1lPfzW8ZQnZBky1osgWN-AUBPVcp</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Semiconductor–Semimetal 2D/3D MoS2/SrRuO3(111) TMD/TMO Heterojunction-Based ReRAM Devices</title><source>American Chemical Society:Jisc Collections:American Chemical Society Read &amp; Publish Agreement 2022-2024 (Reading list)</source><creator>Parmar, Swati ; Panchal, Suresh ; Datar, Suwarna ; Ogale, Satishchandra</creator><creatorcontrib>Parmar, Swati ; Panchal, Suresh ; Datar, Suwarna ; Ogale, Satishchandra</creatorcontrib><description>We have designed and grown MoS2/SrRuO3(111) (MoS2/SRO­(111)) semiconductor (SC)/semimetal (SM) heterostructures involving transition-metal dichalcogenide (TMD) and transition-metal oxide (TMO) partners for TMD-based electronic device application. MoS2 is directly grown on a polar SrRuO3(111)/c-Al2O3 substrate by pulsed laser deposition (PLD). A comparative evaluation of few-layer (FL) versus bulk (BL) MoS2 on polar SRO(111) was performed by using several chemical and physical characterizations. Raman spectroscopy and X-ray photoelectron spectroscopy (XPS) confirm the degenerate states in strained MoS2 caused by polar SRO(111). In-plane room-temperature resistivity of 1.83 and 1.39 μΩ-cm is obtained for FL and BL MoS2/SRO, respectively. Conducting atomic force microscopy (CAFM) was used to elucidate the distribution of in-plane conductive components. The electrical current across the CAFM-tip/MoS2/SRO­(111) is primarily controlled by MoS2 and its interfaces with the tip metal on one side and the oxide semimetal on the other. We find an impressive ReRAM unipolar linear I–V characteristic in the case of FL MoS2/SRO (a sharp jump by a factor of 12), while in the BL MoS2/SRO (thicker overlayer) case, only a negligible effect is noted. Studies of the work function and Schottky barrier height (SBH) modulation due to the thickness variation of the semiconductor MoS2 at the SC/SM heterojunction are performed by the electrostatic force microscopy (EFM) to unveil the mechanism of the memristor-type I–V characteristics.</description><identifier>ISSN: 2637-6113</identifier><identifier>EISSN: 2637-6113</identifier><identifier>DOI: 10.1021/acsaelm.3c00907</identifier><language>eng</language><publisher>American Chemical Society</publisher><ispartof>ACS applied electronic materials, 2023-10, Vol.5 (10), p.5588-5597</ispartof><rights>2023 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0001-5593-9339 ; 0000-0002-9513-0064</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>315,786,790,27957,27958</link.rule.ids></links><search><creatorcontrib>Parmar, Swati</creatorcontrib><creatorcontrib>Panchal, Suresh</creatorcontrib><creatorcontrib>Datar, Suwarna</creatorcontrib><creatorcontrib>Ogale, Satishchandra</creatorcontrib><title>Semiconductor–Semimetal 2D/3D MoS2/SrRuO3(111) TMD/TMO Heterojunction-Based ReRAM Devices</title><title>ACS applied electronic materials</title><addtitle>ACS Appl. Electron. Mater</addtitle><description>We have designed and grown MoS2/SrRuO3(111) (MoS2/SRO­(111)) semiconductor (SC)/semimetal (SM) heterostructures involving transition-metal dichalcogenide (TMD) and transition-metal oxide (TMO) partners for TMD-based electronic device application. MoS2 is directly grown on a polar SrRuO3(111)/c-Al2O3 substrate by pulsed laser deposition (PLD). A comparative evaluation of few-layer (FL) versus bulk (BL) MoS2 on polar SRO(111) was performed by using several chemical and physical characterizations. Raman spectroscopy and X-ray photoelectron spectroscopy (XPS) confirm the degenerate states in strained MoS2 caused by polar SRO(111). In-plane room-temperature resistivity of 1.83 and 1.39 μΩ-cm is obtained for FL and BL MoS2/SRO, respectively. Conducting atomic force microscopy (CAFM) was used to elucidate the distribution of in-plane conductive components. The electrical current across the CAFM-tip/MoS2/SRO­(111) is primarily controlled by MoS2 and its interfaces with the tip metal on one side and the oxide semimetal on the other. We find an impressive ReRAM unipolar linear I–V characteristic in the case of FL MoS2/SRO (a sharp jump by a factor of 12), while in the BL MoS2/SRO (thicker overlayer) case, only a negligible effect is noted. Studies of the work function and Schottky barrier height (SBH) modulation due to the thickness variation of the semiconductor MoS2 at the SC/SM heterojunction are performed by the electrostatic force microscopy (EFM) to unveil the mechanism of the memristor-type I–V characteristics.</description><issn>2637-6113</issn><issn>2637-6113</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid/><recordid>eNpNkM1Og0AUhSdGE5vatVuWGkO5d4afsqylWpMSEsCVC3IZhgQCTMKPa9_BN_RJpJGFq3PO4pyTfIzdI2wROFokB1JNuxUSwAfviq24KzzTRRTX__wt2wxDDTBXuM0dXLGPRLWV1F0xyVH3P1_fl9yqkRqDB5YIjFAn3Er6eIrEAyI-GmkYWGkYGSc1ql7XUyfHSnfmMw2qMGIV70MjUJ-VVMMduympGdRm0TV7fzmmh5N5jl7fDvuzSejjaO4kSe4RAdogKXdtQaUsC9cBFHmZ-5QXpXLQJw7cQ8pt4SPHfAe2kI7yXLFmT3-7M4Ws1lPfzW8ZQnZBky1osgWN-AUBPVcp</recordid><startdate>20231024</startdate><enddate>20231024</enddate><creator>Parmar, Swati</creator><creator>Panchal, Suresh</creator><creator>Datar, Suwarna</creator><creator>Ogale, Satishchandra</creator><general>American Chemical Society</general><scope/><orcidid>https://orcid.org/0000-0001-5593-9339</orcidid><orcidid>https://orcid.org/0000-0002-9513-0064</orcidid></search><sort><creationdate>20231024</creationdate><title>Semiconductor–Semimetal 2D/3D MoS2/SrRuO3(111) TMD/TMO Heterojunction-Based ReRAM Devices</title><author>Parmar, Swati ; Panchal, Suresh ; Datar, Suwarna ; Ogale, Satishchandra</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a191t-8cac27aa0140cab643afcfd65013bfb9abdfe519a20271ab439121b8043c5e763</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Parmar, Swati</creatorcontrib><creatorcontrib>Panchal, Suresh</creatorcontrib><creatorcontrib>Datar, Suwarna</creatorcontrib><creatorcontrib>Ogale, Satishchandra</creatorcontrib><jtitle>ACS applied electronic materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Parmar, Swati</au><au>Panchal, Suresh</au><au>Datar, Suwarna</au><au>Ogale, Satishchandra</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Semiconductor–Semimetal 2D/3D MoS2/SrRuO3(111) TMD/TMO Heterojunction-Based ReRAM Devices</atitle><jtitle>ACS applied electronic materials</jtitle><addtitle>ACS Appl. Electron. Mater</addtitle><date>2023-10-24</date><risdate>2023</risdate><volume>5</volume><issue>10</issue><spage>5588</spage><epage>5597</epage><pages>5588-5597</pages><issn>2637-6113</issn><eissn>2637-6113</eissn><abstract>We have designed and grown MoS2/SrRuO3(111) (MoS2/SRO­(111)) semiconductor (SC)/semimetal (SM) heterostructures involving transition-metal dichalcogenide (TMD) and transition-metal oxide (TMO) partners for TMD-based electronic device application. MoS2 is directly grown on a polar SrRuO3(111)/c-Al2O3 substrate by pulsed laser deposition (PLD). A comparative evaluation of few-layer (FL) versus bulk (BL) MoS2 on polar SRO(111) was performed by using several chemical and physical characterizations. Raman spectroscopy and X-ray photoelectron spectroscopy (XPS) confirm the degenerate states in strained MoS2 caused by polar SRO(111). In-plane room-temperature resistivity of 1.83 and 1.39 μΩ-cm is obtained for FL and BL MoS2/SRO, respectively. Conducting atomic force microscopy (CAFM) was used to elucidate the distribution of in-plane conductive components. The electrical current across the CAFM-tip/MoS2/SRO­(111) is primarily controlled by MoS2 and its interfaces with the tip metal on one side and the oxide semimetal on the other. We find an impressive ReRAM unipolar linear I–V characteristic in the case of FL MoS2/SRO (a sharp jump by a factor of 12), while in the BL MoS2/SRO (thicker overlayer) case, only a negligible effect is noted. Studies of the work function and Schottky barrier height (SBH) modulation due to the thickness variation of the semiconductor MoS2 at the SC/SM heterojunction are performed by the electrostatic force microscopy (EFM) to unveil the mechanism of the memristor-type I–V characteristics.</abstract><pub>American Chemical Society</pub><doi>10.1021/acsaelm.3c00907</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0001-5593-9339</orcidid><orcidid>https://orcid.org/0000-0002-9513-0064</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 2637-6113
ispartof ACS applied electronic materials, 2023-10, Vol.5 (10), p.5588-5597
issn 2637-6113
2637-6113
language eng
recordid cdi_acs_journals_10_1021_acsaelm_3c00907
source American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list)
title Semiconductor–Semimetal 2D/3D MoS2/SrRuO3(111) TMD/TMO Heterojunction-Based ReRAM Devices
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-09-22T21%3A22%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acs&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Semiconductor%E2%80%93Semimetal%202D/3D%20MoS2/SrRuO3(111)%20TMD/TMO%20Heterojunction-Based%20ReRAM%20Devices&rft.jtitle=ACS%20applied%20electronic%20materials&rft.au=Parmar,%20Swati&rft.date=2023-10-24&rft.volume=5&rft.issue=10&rft.spage=5588&rft.epage=5597&rft.pages=5588-5597&rft.issn=2637-6113&rft.eissn=2637-6113&rft_id=info:doi/10.1021/acsaelm.3c00907&rft_dat=%3Cacs%3Ed018240189%3C/acs%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a191t-8cac27aa0140cab643afcfd65013bfb9abdfe519a20271ab439121b8043c5e763%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true